Introducing Continuous Selective Testing of Evolving Software
Version 0.2

Mary Jean Harrold, Darko Marinov, Stephen Oney, Mauro Pezze, Adam Porter, John
Penix, Per Runeson, Shin Yoo

Introduction

Current trends in software engineering, towards more and more continuous evolution of
software, using agile methods, rather than distinct development phases, put new
requirements on software testing. When new versions of the software are built every
day, hour or minute, the test process must change accordingly. The time when
regression test suites were run at the end of the project is passed. Test-driven
development and continuous integration practices are designed to meet those needs in
agile development. Test automation is a key in introducing these practices and is often a
key desire in test improvement (Runeson, 2006).

These testing practices provide a general approach to meet the needs, but even the
automated tests will sooner or later be too time consuming to be run completely every
time, and some kind of test selection must take place. When the regression test suite
takes longer than a weekend, the build test suite takes more than overnight, or when the
unit test suite takes more than a coffee break, there is a need for selecting subsets of test
cases in a systematic way, to enable efficient software engineering.

Other trends also drive the need for efficient test selection, namely highly configurable
systems and product line architectures, which offer an enormous variability that causes
the testing space to grow. Similarly, globally distributed development adds cultural and
other communications barriers to the complexity of the complexity of the software.
Communication of changes and dependencies in the software can be achieved by
continuous testing, complemented by feasible communication tools.

The Context

After modifying software, developers typically want to know that the changes have the
desired effect. Developers often do some form of incremental testing to ensure this. The
simplest incremental testing strategy is to rerun all existing test cases. This method is
simple to implement, but may be unnecessarily expensive, especially when changes
affect only a small part of the system. Consequently, many regression test selection
(RTS) techniques have been proposed (Yoo and Harman, 2010, Engstrom et al. 2010).
With these approaches only a subset of test cases are selected and rerun. Since, in
general, optimal test selection (i.e., selecting exactly the fault-revealing test cases) is
impossible, the cost-benefit tradeoffs of RTS techniques are a central concern of
incremental testing in practice.

Our understanding of these techniques, however, is limited. One reason is that
incremental testing, by definition, is a recurring process, not a one-time activity. As a
result, the costs and benefits of a given technique can change over time. Another reason
is that project-specific process and product characteristics can greatly affect costs and
benefits. That is, the fit of a given testing technique will vary across projects.

Dagstuhl Seminar Proceedings 10111 1
Practical Software Testing : Tool Automation and Human Factors
http://drops.dagstuhl.de/opus/volltexte/2010/2622



Below we describe some factors that affect the costs and benefits of using incremental
testing techniques.

Process and Product Characteristics. Individual projects can vary in many ways. For
example, projects following an agile process will divide the project into many, short
increments. Those following a more waterfall-like process will have few, longer
increments. Within an increment, some projects will have high code churn rates, with a
high percentage of code changing, producing new versions of methods, files and systems
at a very high pace. Others may be more stable, changing only a small percentage of the
code in any given increment. Some processes will use co-located developers, for whom
communication is easy to organize. Other projects will use distributed development
teams, relying more heavily on the results of incremental testing to signal and
communicate development status and activity. Software architectures can vary. Some
projects will be created from many, independent, but statically known components;
some will be created from independent components that are dynamically composed at
runtime; other projects will have more monolithic architectures; and others will be
highly configurable. In any case, many variants may exist simultaneously with smaller or
larger differences between them. Finally, different projects will support different non-
functional requirements, such as being safety critical, needing high availability, or
requiring an ability to operate on multiple different computing platforms.

Testing Goals. The purpose of each individual testing session can vary as well. Some
testing activities will focus on testing functional correctness, while others will focus on
non-functional requirements. Functional testing is often divided into different levels of
testing granularity. Some test acticites are focused on individual code units; some on
testing integrated assemblies of components; some on testing the whole system. Non-
functional testing may look at issues such as performance and operation under heavy
loads.

Testing Resources. Test suites often start small, but build up over time. Since
developers generally want feedback as quickly as possible, they sometimes manually
subdivide their test suites into smaller test suites. For instance the smallest-sized test
suites are sometimes called smoke tests. Smoke tests are few and of short duration,
taking say 5 to 15 minutes to complete. The next sized test suites may run in 1 to 4
hours. The next larger may be intended to run over night, taking up to 8 hours. Finally,
the largest test suites can take many days over even months to complete.

Testing Tools. The tools referred to when talking about testing tools are often test
execution tools and frameworks, i.e. the jUnit framework. However, in an iterative
development environment, configuration management tools are key to keep track of
versions and variants of software to be tested. Further, test management tools, keeping
track of the planning and execution of test cases is needed to support decision and
monitoring of the test process and what is tested, by whom, and when. Defect
management tools also play an important role in following up test activities.



General Infrastructure

When introducing continuous testing of evolving software, which is selective, based on
systematic approaches, the testing infrastructure must meet some specific requirements
to enable the testing. We define a general infrastructure for iterative testing, with
process and tools.

Test process: The iterative testing process begins with two versions of the source code
and test code, see Figure 1. Version N is the most recent version of the code that has
been tested. Version N' is a newer version of the code that has undergone one or more
changes. Both versions are provided as input to an Impact Analysis activity that
determines which parts of the code are potentially affected by the change. The output
impact analysis is some collection of artifacts from the code - such as source lines,
methods, or files - that are considered impacted by the change, i.e. constitute Affected
Artifacts. Next, a Test Selection activity takes the Affected Artifacts and determines a
subset of the test to be executed, based on the information available on the change, test
execution history etc. Then, a Test Prioritization activity orders the test, based on
similar information. Then the Ordered Set of test cases are executed, either fully, or as
long as time permits. The result of Test Execution includes test result (pass, fail, timeout,
etc.) as well as other information such as code coverage data and test run duration data.
These data are used for the next iteration of testing.



Version N Version N'

Code Code
+ +
Tests e Tests

"\\
' N
Impact Impact
Analysis Analysis
Affected Affected
Artifacts Artifacts

Test
Selection

Subset of Tests

Test
Prioritization

Test
Selection

Subset of Tests

Test
Prioritization

Past
Decisions

O o and Data
Subset of Tests

Execution Data
» Pass, Fall, ...

* Code Coverage
« Timing Info

Ordered
Subset of Tests

Execution Data
« Pass, Fall, ...

» Code Coverage
= Timing Info

Figure 1. Conceptual process for continuous selective testing.

Tools: In order to support this process, the tool chain must be adapted. The tools
needed are of three kinds, configuration management (CM), defect management (DM)
and test case management (TCM), and specific relations between them must be in place,
see Figure 2.



Configuration management tools must support the definition of versions at different
levels — method, file, component or system - depending on the context. The CM tools
must also support the definition of product variants. Build dependency relations must
be supported by the CM tools to enable identification of underlying components in the
impact analysis. Finally, it must support the identification of changes between versions
of configuration items, to produce a list of artifacts affected by the changes between two
versions. Test cases must be set under version control, like any software engineering
artifact.

Defect management tools must store information about defects found and corrected,
including information about which version and variant the defect was found. Defect
types may also be stored to enable use of approaches that give different priority to
different types of defects.

Test case management tools must store the execution history of test cases. This includes
connections to CM tools to track which versions and variants are tested with a certain
test case. Further, information about which test cases identified defects must be possible
to track from each test case.

Based on this tool chain, a prioritized list of test cases can be derived based on their
historical ability to detect faults, relation to recent changes or most recent execution
time, depending on the prioritization strategy chosen. The test designer may use the
proposed list of test cases as is, or adjust it based on other priorities in the project. For
this purpose, the test selection tool must provide a scoreboard function to enable the
testers’ interaction with this list.

Code file

Test case

Figure 2. Tool support needed to support continuous selective testing.



Human factors. Human factors become an issue, especially when multiple developers
are working on interdependent components. While coordination between developers
normally happens formally, at predetermined intervals, which is time-consuming but
predictable, or informally, which is unpredictable, but flexible. The idea of Continuous
Coordination (http://en.scientificcommons.org/42468508) has been proposed to aid
developers working on collaborative software engineering projects. The idea behind
continuous coordination is that developers are given the freedom to coordinate
themselves however they see fit, but that through information visualization, they can
make better choices when synchronizing their codebases. One technique, for example,
would allow developers to see what modules other developers are working on
(information that is collected implicitly through developer activity). This would allow
them to make more informed decisions if, for example, a test starts breaking, of whether
or not and how they should integrate their code.

Case studies
Scenarios that show the applicability of the techniques
For each case, present (as much as secrecy policies allow):
- Goals - what will the company achieve by the continuous testing?
- Driving forces - what are the motivating factors? Who is driving?
- Solutions (related to general model)
0 Atwhatlevels is this applied (unit, system)
0 Which information is used for the selection and execution? Which tools?
0 Frequency of iterations? Magnitude of code and changes?
- Gains - what are the gains with the continuous testing? Is it worth the effort
spent?

Selected cases
- Google (John Penix)
- ABB (Brian Robinson?)
- Microsoft (Wolfram Schulte, Nachi Nagappan?)

1-2 pages per case?

Tools and Technologies — Research Review
Techniques for reducing the cost of testing evolving software can be categorized in two
different ways: the methodology they use and the criteria they are based on. For more

details, readers are encouraged to refer to recent surveys of the area (Engstrom et al.
2010, Yoo and Harman, 2010).

Methodologies for Reducing Cost of Testing

Selection Approach: Here, the goal is to reduce the number of tests to be executed by
identifying the set of tests that are not relevant to the latest changes in the software. The
relevance relation is determined based on various static analyses. For example, the
control flow analysis is a criterion that is often used for unit level testing: the static
analysis identifies the locations in Control Flow Graph (CFG) where the old version and
the new version of the source code depart from each other. Test cases that execute these



locations may potentially reveal the differences between two versions and, therefore,
they need to be executed after the change. Empirical studies have shown that, if applied
with the right frequency, selection approach can result in as much as XX% reduction of
testing cost|cite].

Minimization Approach: The goal of minimization approach is to identify redundant
tests. The redundancy of a test case is defined in relation to the set of test goals it
achieves. A test case can be said to be redundant if there exist another test case that
achieves all the test goals of the first test case and more. One metric that has been widely
used as test goals is code coverage; if a test case covers a subset of structural elements
(e.g. statements or branches) that are covered by another test case, the first test case is
redundant in terms of code coverage.

Prioritization Approach: The goal of prioritization approach is to try to maximize the
early fault detection so that the tester can get the maximum benefit even if the testing is
terminated at an arbitrary point. Since the fault information is inherently absent at the
time of testing, in practice the prioritization uses a surrogate property that is expected
to correlate with the rate of fault detection. Again, one widely used surrogate is code
coverage.

Criteria for the Cost Reduction

Code Coverage: Structural coverage of source code has been the most widely used
metric that guides the aforementioned approaches. While the realization of code
coverage is not sufficient to achieve fault detection, it is nevertheless necessary and,
therefore, should be pursued as much as possible.

Historical Information: [description of usage of data such as the last test execution
time, past fault coverage, etc in the literature]

Model-based Criteria: [description of selection/minimization/prioritization criteria
defined over UML/FSM etc]

Conclusions
TBD

Acknowledgement
This paper originates from the Dagstuhl workshop 10111 Practical Software Testing.

References

E. Engstrom, P. Runeson and M. Skoglund, A Systematic Review on Regression Test
Selection Techniques, International Software Technology, 52(1):14-30, 2010.

S.Kim, S. Park, J. Yun and Y. Lee, Automated Continuous Integration of Component-
Based Software: an Industrial Experience, 23rd IEEE/ACM International Conference on
Automated Software Engineering, pp. 423-426, 2008

P. Runeson. A Survey of Unit Testing Practices. IEEE Software, 23(4):22, 2006.



S.Yoo and M. Harman, Regression Testing Minimisation, Selection and Prioritisation : A
Survey, Software Testing Verification and Reliability, online March 2010, DOI:
10.1002/stvr.430





