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Abstract

Software in the cloud is characterised by the need to be highly adap-
tive and continuously available. Incremental changes are applied to the
deployed system and need to be tested in the field. Different configura-
tions need to be tested. Higher quality standards regarding both func-
tional and non-functional properties are put on those systems, as they
often face large and diverse customer bases and/or are used as services
from different peer service implementations. The properties of interest in-
clude interoperability, privacy, security, reliability, performance, resource
use, timing constraints, service dependencies, availability, and so on. This
paper discusses the state of the art in model-based testing of cloud sys-
tems. It focuses on two central aspects of the problem domain: (a) dealing
with the adaptive and dynamic character of cloud software when tested
with model-based testing, by developing new online and offline test strate-
gies, and (b) dealing with the variety of modeling concerns for functional
and non-functional properties, by devising a unified framework for them
where this is possible. Having discussed the state of the art we identify
challenges and future directions.
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1 Introduction

In this paper we first discuss cloud computing and what makes testing particu-
larly difficult. We then focus on several important aspects of cloud computing.
For each aspect we review the state of the art, outline key challenges, and pro-
pose possible solutions and research directions.

2 The nature of The Cloud

Include a scenario in this section.
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3 Scalability Requirements

Scalability is a particularly important consideration for many large-scale, net-
worked systems, and as described in this section, it introduces a host of new
challenges to model-based testing.

Despite its importance, scalability is a concept that has been poorly defined
and poorly understood. Indeed, scalability is not even included in the main
taxonomies of non-functional requirements appearing in industrial standards
and the software engineering literature [20, 2, 7, 22, 23]. And the relatively few
attempts in the literature to define the term tend to associate scalability solely
with performance.

In recent work, we have defined a framework to characterize and analyze a
system’s scalability in precise terms [12, 11]. We define scalability as a quality
of a system characterizing its ability to maintain the satisfaction of its quality
goals to levels that are acceptable to its stakeholders when characteristics of the
application domain and the system design vary over expected ranges. There are
two important aspects of this definition worth highlighting: First, scalability is
about variation of phenomena that arise in two places, namely the application
domain or execution environment (over which developers typically have very
little or no control) and the system design (over which developers have a great
deal of control). Examples of the former are the average and peak rate at which
users submit queries to a system, while examples of the latter are the size of a
message buffer and the number of cores used for execution. Second, scalability
is a quality that relates to other qualities, such as performance, resource con-
sumption, availability, security, and others. Furthermore, scalability typically
relates to multiple such qualities, which must be traded off in a Pareto-optimal
fashion.

*** more detailed examples can be provided that illustrate the above concepts
***

In our earliest work on scalability, we applied our framework to a compar-
ative characterization and analysis of the scalability of two consecutive designs
for a real-world financial fraud detection system called IEF, with the earlier
design employing a pure memory cache in a key component, and the latter
design employing a hybrid memory/disk cache. The second design was devel-
oped in order to address scalability problems that existed in the first design. In
particular, we ran test executions of existing, deployed implementations of the
designs, varying the executions over ranges of values for the key characteristics
of the application domain (and system design that govern the execution of IEF.
An example of a key characteristic of the application domain is the number
of distinct “business entities” represented in the transaction data processed by
IEF, while a key system design characteristic is the size of the thread pool used
for concurrent processing of transactions. For each execution we measured the
key system qualities of interest, namely throughput, memory consumption and
disk consumption, and we combined these measurements via a utility function
provided by the stakeholders of IEF to a single scalar value representing the
scalability of the execution. Finally, we plotted the utility values against the
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corresponding ranges of values for the application domain and design character-
istics, resulting in what is in essence a “scalability profile” for the two designs,
allowing us to demonstrate that the latter design was indeed the more scalable
of the two designs.

*** details and plots can be provided for the study described above ***
In our most recent work we have developed a systematic method for elaborat-

ing and analyzing scalability requirements, which among other things provides
the basic information needed to undertake an analysis of a deployed system
of the kind described above. Our method is an extension of the KAOS goal-
oriented requirements engineering method, which relates business goals, software
requirements and domain assumptions, and which supports the management of
conflicts between goals and the resolution of obstacles to the satisfaction of
goals [23]. More specifically, we have extended the conceptual framework of
KAOS with a precise characterization of the concepts of scalability goals, scala-
bility requirements and scaling assumptions and their roles in goal models. We
then deal with scalability concerns during the goal-obstacle analysis steps of the
goal-oriented elaboration process [29]. It starts from the observation that dur-
ing a typical requirements elaboration process, most goals are elaborated first
without considerations for scalability. The specification of such goals implicitly
assumes that system agents, including human agents, software components and
hardware devices, have infinite capacities for satisfying them. In the running
system, such goals will be violated when some application domain quantities
scale above the capacities of the system agents. We characterize such condi-
tions as scalability obstacles; existing obstacle analysis techniques [29] do not
consider scalability obstacles. Our approach to elaborating scalability require-
ments consists of systematically identifying and dealing with such scalability
obstacles at requirements elaboration time, instead of later in the development
process or (even worse) during system usage. Anticipating scalability obstacles
at requirements level provide greater freedom to modify or extend the system
design to deal with the problems. We resolve identified scalability obstacles by
modifying and consolidating the system requirements specification in a precise,
quantitative manner so that it specifies all relevant scalability goals, scalability
requirements and scaling assumptions needed to inform later stages of develop-
ment.

*** examples illustrating the method described above can be provided ***
So as a result of our previous work, we have the means to specify scalability

requirements in the earliest stages of development, and the means to analyze
the scalability of the finished product in the final stages of development. What
we lack are systematic ways of progressing from the former to the latter. In
particular, we lack

1. formal modeling languages that allow us to express architectures and de-
signs in a way that makes scalability concerns explicit;

2. techniques for analysis and simulation of such architecture and design
models that would allow early detection of the violation of scalability
requirements and the identification of additional scalability problems;
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3. techniques for systematic generation of test cases from such models; and

4. techniques for executing the test cases and evaluating their results across a
range of values for relevant application domain and design characteristics,
in a way that produces useful and accurate test results even if the execution
environment cannot be fully and faithfully reproduced.

In this paper we are interested in addressing the first, third and fourth of these
items, which together would constitute an approach for model-based testing of
scalability requirements.

Development of such an approach requires addressing (at least) three major
challenges. First, a wide variety of modeling, analysis and testing approaches
have been developed for the different system qualities one might be concerned
with in evaluating the scalability of a system. For instance, modeling and anal-
ysis of performance characteristics typically involves specification of probability
distributions for waiting times and service times. Such information can be spec-
ified as extensions to UML design models, from which queueing network models
can then be derived for analysis of overall system performance. On the other
hand, testing and estimating the reliability of a system typically involves sam-
pling the system input space according to an operational profile, executing the
tests under a controlled time schedule, and executing enough tests for a statisti-
cally meaningful estimate, so that an accurate picture of reliability growth can
be developed. This first challenge is thus to find a way of reconciling, relating
and (ideally) unifying these disparate approaches to modeling and testing in
order to facilitate a uniform means of scalability testing.

A second and related challenge relates to the fact that the qualities one con-
siders in scalability typically compete in a Pareto-optimal fashion. As a simple
example, a network communication component may be able to achieve increased
throughput at the cost of increased memory consumption for message buffers.
Or vice versa, the component may be able to reduce memory consumption at
the cost of increased latency. Scalability testing thus requires the generation of
test cases that allows one to explore such tradeoffs in a way that allows sensible
decision-making for their resolution.

The third challenge relates to the fourth item listed above, which alludes to
the need in scalability testing to “fake” a system into experiencing the effects and
extremes of a variety of deployment environments even when those environments
cannot be faithfully reproduced at test time. This is already a problem faced
in performance testing and load testing, and testers sometimes resort to clever
“tricks” involving transformation or compression/expansion of test data and test
parameters (and we employed such techniques in early versions of the IEF study
described earlier). Having multiple system qualities to test simultaneously, as
is required typically in scalability testing, only compounds the problem, and
thus scalability testing begs for a more rational approach that replaces trickery
with mechanics that can produce test results having predictable and provable
accuracy.
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4 MBT for adaptive and evolving systems

5 Security

Security is a key issue in modern software intensive systems driving the every-
day life of billions of people all around the world. If we consider the use of
clouds, one of the main obstacle for the adoption of clouds by large companies
is the security assurance guaranteed by providers.

Software systems deployed in clouds must be available 24/7 with a high level
of security. Among different security concerns (user authentication, data encryp-
tion, etc), access control plays a critical role. It ensures that users, depending
on their roles, can only access the resources they are supposed to access.

From the viewpoint of the cloud provider, it should be able to ensure the
access control of the cloud as a whole. From the client of a cloud viewpoint,
security will focus on the internal accesses permissions. Both policies have to
be synchronised, especially in case of intrusion detection (unexpected event)
or when one of the stakeholders decides to modify the access rights. Due to
the distributed nature of a cloud, the complexity of the potential discrepancies
between all these viewpoints may be high. Since the system deployed on a cloud,
as well as the computing resources, are not frozen and may evolve in parallel,
inconsistencies may occur which must be detected each time an adaptation is
performed.

The solution is to use the standard architecture that involves designing a
dedicated security component, called the policy decision point (PDP), which
can be configured independently from the rest of the implementation containing
the business logic of the application. The execution of functions in the business
logic includes calls to the PDP (called PEPs policy enforcement points), which
grant or deny access to the protected resources/functionalities of the system.

The objective of the test cases in a partly automated generation process
(PDP and PEPs) is to check that the security policy of the application is fully
synchronised with the security model. Errors in the security policy can have
several causes. They can be caused by an error in the policy definition, by an
error when translating the policy into an executable PDP or by an error in the
definition of PEPs (calls to the PDP at the wrong place in the business logic,
calls to the wrong rule, missing call, etc.). In order to increase the efficiency
of the validation and verification tasks, we investigate an integrated approach
based on two facets. First, we want to ensure as much quality as possible by
construction. For that purpose we propose an MDE process based on a spe-
cific modeling language for security policies and automatic transformations to
integrate this policy into the core application. Second, we develop generic veri-
fication and validation techniques that can be applied early in the development
cycle and that are independent of any particular security formalism.

The main limitation of the current access control implementation techniques
is that they neither support flexible access control mechanisms nor the alignment
of the system security policy with the distributed resources of the clouds. There
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is therefore a need for adaptive access control mechanisms and MBT techniques
to test that any change of the models have been correctly propagated to the
system implementation in the specific deployment on a cloud.

6 MBT for non-functional properties

7 Distributed testing

When testing a physically distributed system we may have to supply inputs
and make observations at the separate interfaces (ports). Typically there is no
global clock and so it is not possible to establish the ordering of the sequence
of observations (global trace) made. Instead, we know the order of events at
each port and potentially are able to synchronise at certain points in the global
trace.

Two effects of distributed testing have been discussed. First, there can be
additional controllability problems; the tester tp at a port p may not know when
to send an input because it did not observe events at the other ports [26]. Let
us suppose, for example, that the tester tq at port q is to supply the first input
xq, this should lead to output yq at port q only and we then want the tester tp
at port p 6= q to supply input xp. Here tp does not know when to send its input
since it does not observe the previous events. As a result, if we try to execute
this test then we cannot be sure that the SUT receives xq before xp.

A second effect, called an observability problem, occurs when we expect
a global trace σ to occur but there is another global trace σ′ 6= σ that is
indistinguishable from σ when making local observations [9, 10]. Here σ and σ′

are indistinguishable if for every port p we have that the projections onto p of
σ and σ′ are identical. Let us suppose, for example, that the tester tq at port
q is to supply the first input xq, this should lead to output yq at port q and yp
at p 6= q, this is to be followed by xq at q and we expect output yq at q only.
Then the tester at port p should observe yp and the tester at q should observe
xqyqxqyq. This is also the case if the SUT produces yq only in response to the
first xq and produces yq and yp in response to the second xp. Essentially, fault
masking has occurred: The response to each input is not that specified but the
two differences have masked one another. Thus, the differences are not found
when running this test but might later be exhibited in use if a sequence in which
there is no fault masking is used.

Many methods for avoiding or overcoming controllability and observability
problems have been reported in the context of testing from a deterministic finite
state machine (DFSM) [6, 5, 28, 18, 25, 27]. However, distributed systems are
rarely deterministic and so the DFSM model is usually too restrictive for this
domain. In addition, it is straightforward to produce examples in which we
cannot achieve test objectives, such as executing particular transitions, if we
restrict to controllable testing. Thus, these methods are use a formalism that is
not suitable for distributed systems and also, even within the DFSM formalism,
lack generality.
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Controllability and observability problems arise from the inability of the
testers to synchronise their actions. However, this can potentially be overcome
if the testers can communicate with one another through sending coordination
messages [4]. Again let us suppose that the tester tq at port q is to supply the
first input xq, this should lead to output yq at port q only and we then want
the tester tp at port p 6= q to supply input xp. We have seen that there is a
controllability problem since the tester at p does not observe the events at q and
so cannot know when to send its input. However, if the testers can communicate
then tq can send a message to tp, after it has supplied its input. Similar schemes
can be used to overcome observability problems. However, the establishment
of an external network through which the testers can communicate can incur
costs and the need to wait for coordination messages can make testing slower
and so more expensive. In addition, there can be tests that cannot be run in
this manner if there are timing constraints [21]. Other approaches that help the
tester synchronise their actions include the use of monitors [1, 8, 13, 30] and
methods for establishing an approximation to a global clock through the ex-
change of messages between agents (the testers) [4]. However, these approaches
introduce additional costs and complexity into the testing process.

A separate line of research has explored conformance relations, for dis-
tributed testing, that reflect the observational power of the testers. Confor-
mance relations were initially defined in the context of DFSMs [19] but more
recent work has defined conformance relations for input/output transition sys-
tems [15, 16]. Conformance relations have also been defined for the case where
there are distributed ports but global observations can be made [3, 14, 24].

The key problems introduced by distributed testing are controllability and
observability. Controllability can make it difficult to design a test that achieves
a given objective, such as reaching a state or executing a transition. Specifically,
we may not be able to achieve a test objective without introducing controllability
problems and these make it hard to know what sequence of inputs was actually
applied to the SUT and to guarantee that the inputs are received in the desired
order. Thus, controllability problems make it hard to apply a test that achieves
an objective.

Observability problems can lead to fault masking. In addition, conformance
relations that reflect the nature of distributed testing can be rather different
from traditional conformance relations. For example, the conformance relation
usually used when testing from a DFSM is an equivalence relation but this is
not the case in distributed testing [19].

Having run a test, our observation is a set of sequences; one local trace for
each port. If we wish to check whether the observed behaviour is consistent
with a model M then we need check this set of local traces against M . This
potentially introduces a combinatorial explosion even if M is deterministic since
controllability problems can mean that there is an exponential number of orders
in which the SUT could have received the input and so potentially we need to
compare the local traces with an exponential number of global traces of M .

These problems are all potentially significant when testing any distributed
system. For cloud computing, however, we have extra complexities in terms
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of non-functional requirements. In addition, by their nature cloud systems are
likely to be large and so we require methods that scale.

There are a range of approaches that might help distributed testing of cloud
systems. These include the following.

1. Include some synchronisation in order to simplify test execution and the
oracle problem and to increase the observational power of testing. How-
ever, there is a cost to synchronisation and so there is the challenge to
introduce enough to help testing but not too much. In particular, it will
be important to find the right places to apply synchronisation but also
tests that require relatively little synchronisation. There is a trade-off
here: synchronisation has a cost but it simplifies testing.

2. Further develop notions of correctness that represent limited observational
ability. Here, it is particularly important to include non-functional prop-
erties. Some initial work has defined a conformance relation for proba-
bilistic systems [17] but it appears that other non-functional aspects have
not been investigated.

3. Adaptive automated testing for distributed testing. Testing must be adap-
tive but we might aim to produce tests that achieve probabilistic objec-
tives. For example, rather than requiring a test to be guaranteed to reach
a state we might be happy with it having a high probability of reaching
the state. Ideally, the tests are such that we can determine after testing
whether the objective was achieved and so re-run the test if it was not.

4. We might use results from game theory in test generation, since we can
see testing as a game with incomplete information.

8 Conclusions
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