
10152 Abstracts Collection

Relationships, Objects, Roles, and Queries in

Modern Programming Languages

� Dagstuhl Seminar �

Guido Boella1, Erik Meijer2, David J. Pearce3, Friedrich Steimann4 and Frank
Tip5

1 University of Torino, IT
guido@di.unito.it

2 Microsoft Corp. - Redmond, US
3 Victoria University of Wellington, NZ

david.pearce@mcs.vuw.ac.nz
4 Fernuniversität in Hagen, DE

steimann@acm.org
5 IBM TJ Watson Research Center - Hawthorne, US

ftip@us.ibm.com

Abstract. From 11/04/10 to 16/04/10, the Dagstuhl Seminar 10152
�Relationships, Objects, Roles, and Queries in Modern Programming
Languages � was held in Schloss Dagstuhl � Leibniz Center for Infor-
matics. During the seminar, several participants presented their current
research, and ongoing work and open problems were discussed. Abstracts
of the presentations given during the seminar as well as abstracts of sem-
inar results and ideas are put together in this paper. The �rst section
describes the seminar topics and goals in general. Links to extended ab-
stracts or full papers are provided, if available.

Keywords. Relationships, Roles, Software Modelling, Programming Lan-
guages

Seminar Topics and Goals

The notions of relationship, object and role are common in many domains such
as, for example, sociology, cognitive science, organisational science and linguis-
tics. These notions are also well-supported in many areas of computer science,
including: conceptual modeling, database systems, formal ontology and computa-
tional linguistics. However, despite their fundamental importance, these notions
are still poorly represented in modern programming languages.

More speci�cally, while modern object-oriented programming languages pro-
vide �rst-class support for objects, they lack any notion of relationships and
roles. In such languages, objects are forced to implement relationships and roles
using a variety of ad-hoc mechanisms (e.g., pointers and hash-tables) leading to

Dagstuhl Seminar Proceedings 10152
Relationships, Objects, Roles, and Queries in Modern Programming Languages
http://drops.dagstuhl.de/opus/volltexte/2010/2575

2 G. Boella, E. Meijer, D.J. Pearce, F. Steimann and F. Tip

a disconnect between designs and models and their implementation. This leads
to numerous problems across the software engineering life cycle. At the imple-
mentation level, the reliability and maintainability of software are particularly
a�ected. This is because a single role or relationship may be represented by sev-
eral code fragments that are scattered widely throughout the source code of an
application. In current mainstream languages, programmers are also burdened
with having to manage consistency properties on relationships explicitly (e.g.,
the fact that a relationship is one-to-many), and by the lack of linguistic sup-
port for commonly used operations on relationships such as querying and join
operations.

To address these issues, a growing number of researchers in the software com-
munity are incorporating �rst-class support for relationships, roles, and querying
into modern programming languages. There are several di�erent reasons why re-
searchers are motivated to do this:

� Researchers in programming language design wish to bridge the gap between
implementation and design. As discussed above, this is because the lack
of relationships, roles, and querying at the implementation level causes a
disconnect from the design.

� Researchers in program analysis are interested in raising the level of abstrac-
tion in programming languages. This is because the absence of language
support for relationships, roles, and querying leads to an increased use of
pointers. In turn, this complicates many tasks in program analysis as precise
pointer alias information becomes necessary.

� Researchers in databases are keen to bridge the �impedance mismatch� be-
tween programs and databases. Many current languages rely on the use of
string values for accessing and querying data bases, which is error-prone,
and can lead to security vulnerabilities.

� In the absence of language support for querying, many commonly used op-
erations need to be expressed using nested loops and complex conditional
statements. This makes code harder to understand, optimize, and parallelize.

� Researchers in modelling languages and knowledge representation want to
clarify whether roles and relationships are dual notions, or whether one can
be substituted for by the other. This has an impact on programming language
design, in that it helps keeping the number of new constructs as small as
possible.

The purpose of this workshop is to bring together leading researchers working
on relationship-, role- and query-based systems and related areas for a week-long
meeting. It is our aim to have presentations from each community on a balanced
set of topics that is designed to be accessible and relevant to all involved. In this
way, we aim to cross-fertilise important ideas from these communities, and push
forward the state-of-the-art in their respective areas.

Relationships, Objects, Roles, and Queries in Modern Languages 3

TALK: Beyond the Steimann Factorization

Uwe Assmann (TU Dresden, DE)

In contrast to natural types, role types are founded and semantically non-rigid,
as classi�ed by Guarino.

Based on this distinction, Steimann has suggested a factorization of an ob-
ject's type. Essentially, a type is factored into a tuple of a natural and several
role components, so that polymorphism can be expressed as navigation in the
product lattice of the tuple.

This talk presents Steimann's work from this point of view and discusses
an extension of this factorization by the notion of facets, which are semanti-
cally rigid, but non-founded. Facets fall in one spot of the "type matrix" of
Steimann/Guarino, closing the gap between natural and role types to a consid-
erable extent. Phases close another spot, because they are non-rigid and non-
founded.

Keywords: Facet classi�cation, role types, phase types, Steimann factorization,
variability

TALK: Veri�cation of Relationship-Based Programs

Stephanie Balzer (ETH Zurich, CH)

Programming languages supporting explicit relationships raise the level of ab-
straction available at the programming language level. The availability of appro-
priate abstractions at the programming language level raises also the hope that
the veri�cation of relationship-based programs becomes simpler. In this talk, we
present a veri�cation technique developed in the context of our relationship-
based programming language Rumer. The veri�cation technique is a visible
states technique and leverages the particular abstractions available in Rumer
and their induced program modularization. We discuss the applicability of the
technique on an example.

Keywords: Relationship-based programming language, invariants, veri�cation

4 G. Boella, E. Meijer, D.J. Pearce, F. Steimann and F. Tip

TALK: The Important Role of Roles and Relationships in
Static (Typestate) Analysis

Eric Bodden (TU Darmstadt, DE)

We discuss the important role that roles and object collaborations play in the
area of static analysis, especially static typestate veri�cation. In typestate analy-
sis, one can distinguish properties that reason about single objects and properties
that reason about combinations of objects. Many interesting properties are of
the latter kind. Determining a joint typestate of multiple related objects is chal-
lenging because the variables that point to these objects may be aliased and
may be spread throughout the program. But typestate properties are often the
consequences of roles that objects play in a particular collaboration. We argue
that if programming languages properly supported the explicit declaration of
collaborations and roles, this could aid static analysis.

TALK: Roles in OO programming and beyond

Guido Boella (University of Torino, IT)

In this talk the model of roles used to develop the OO language powerJava will
be illustrated also with reference to its applications to web applications, agent
programming languages and ontologies.

Keywords: Roles, object oriented programming, agent oriented programming

See also:

TALK: Unifying Remote Data and Services with Batches

William R. Cook (University of Texas - Austin, US)

Most large-scale applications integrate remote services and/or transactional databases.
Yet building software that e�ciently invokes distributed service and accesses re-
lational databases is still quite di�cult. Existing approaches to these problems
are based on the Remote Procedure Call (RPC) and Object-Relational Map-
ping (ORM). RPCs have been generalized to distributed object systems with
remote proxies, a kind of remote object reference. ORM tools generally support
a form of query sub-language for e�cient object selection. The last 20 years
have produced a long litany of technologies based on these concepts, including
ODBC, CORBA, DCE, DCOM, RMI, DAO, OLEDB, SQLJ, JDBC, EJB, JDO,
Hibernate, XML-RPC, Web Services and LINQ. Even with these technologies,
complex design patterns for service facades and/or bulk data transfers must
be followed to optimize communication between client and server or client and
database, leading to programs that are di�cult to modify and maintain. While

Relationships, Objects, Roles, and Queries in Modern Languages 5

signi�cant progress has been made, there is no widely accepted solution or even
agreement about what the solution should look like. In this talk I present a new
uni�ed approach to invocation of distributed services and data access. The so-
lution involves a novel control �ow construct that partitions a program block
into remote and local computations, while e�ciently managing the communica-
tion between them. The solution does not require proxies or an embedded query
language. Although the result itself is elegant and useful, what is more signi�-
cant is the realization that the original problems cannot be solved using existing
programming language constructs and libraries.

Keywords: Database, Query, Remote Procedure Call

TALK: Session types for access and information �ow
control

Mariangiola Dezani (University of Torino, IT)

We consider a calculus for multiparty sessions with delegation, enriched with
security levels for session participants and data. We propose a type system that
guarantees both session safety and a form of access control. Moreover, this type
system ensures secure information �ow, including controlled forms of declassi�-
cation.

In particular, the type system prevents leaks that could result from an un-
restricted use of the control constructs of the calculus, such as session opening,
selection, branching and delegation. We illustrate the use of our type system
with a number of examples, which reveal an interesting interplay between the
constraints used in classical security type systems and those used in session types
to ensure properties like communication safety and session �delity.

Keywords: Concurrency, communication, session types, secure information �ow

TALK: Synergy among Features in Object Teams

Stephan Herrmann (Berlin)

Object Teams provides a playedBy relationship that supports all 15 criteria for
role playing as collected by Steimann(2000).

However, the approach draws even more strength from how it integrates roles
with existing object-oriented concepts and mechanisms.

Speci�cally, combinations with class nesting, Java generics and with inher-
itance will be discussed. In Object Teams each of these concepts has been en-
hanced compared to what pure Java supports. All these enhancements are specif-
ically geared at creating synergy when used together with and applied to roles.

Thanks to this synergy roles play a central role for a wide range of designs
far beyond the textbook examples of Persons and Employees.

6 G. Boella, E. Meijer, D.J. Pearce, F. Steimann and F. Tip

TALK: EASY Meta-Programming with Rascal

Paul Klint (CWI - Amsterdam, NL)

Rascal (see www.rascal-mpl.org) is a new meta-programming language that in-
tegrates syntax analysis, term rewriting and relational calculus. It supports the
Extract-Analyze-SYnthesize paradigm that is suitable for many analysis, mod-
elling and codegeneration tasks. We give an overview of the language and its
main applications.

Keywords: Meta-Programming, Software Analysis, Software Transformation,
Domain-Speci�c Languages

TALK: Unrestricted pointers considered harmful

Alan Mycroft (Cambridge University, GB)

Depending on which community we are in, we probably learn about ownership
types and/or substructural types (including linear types and separation logic),
we may learn about region-based memory allocation. But it seems we �rst have
to pick a community, and then read the material. I also found that there is
little tutorial material around so was reduced to reading papers which refer to
previous papers. Isn't it time for a textbook?

TUTORIAL: Roles and Relationships

James Noble (Victoria University of Wellington, NZ)

Relationships are well-known as a weak point in object-oriented modeling. In a
UML diagram, a relationship or association can be drawn as a line connected
two (or more) classes � but implementing these relationships in OO programing
languages s is rather more di�cult. In this talk, I'll give a survey of approaches
to designing relationships (including C# 3.0s LINQ), suggest a set of goals for
relationship support, and present some potential directions for future work.

(A version of this talk was an invited keynote at the ECOOP 2007 Work-
shop on Roles and Relationships in Object-Oriented Programming, Multiagent
Systems, and Ontologies)

TUTORIAL: ECMA PCTE OMS

Stephan Herrmann (Berlin)

Presenting the Object Management System (OMS) of the Portable Common
Tool Environment (PCTE) as standardized by the European Computer Manu-
facturers Association (ECMA). While striving to provide an object oriented per-
sistent storage (specialized for Software Engineering Environments) it exhibits
a great symmetry between objects and links, both being �rst class entities.

Relationships, Objects, Roles, and Queries in Modern Languages 7

TALK: Memory Management of Weak Exogenous
Associations

Kasper Osterbye (IT University of Copenhagen, DK)

Sometimes one needs to create an association, such as OwnerOf, between existing
objects, such as a Person and Car, that do not themselves have �elds that allow
them to refer to each other. Such an exogenous associa-tion creates a memory
management problem: it should not keep a Person object and an associated Car
object live unless at least one of them is live for other reasons. Unfortunately,
standard weak hash maps are inadequate in the case of cyclic associations �
that are encountered if we have an OwnedBy association as well as an OwnerOf
association.

In the �rst part of this paper we show how exogenous associations can be
properly maintained on the .NET platform using hash tables, weak refer-ences,
and �nalizers. The solution is particular interesting for object rela-tional map-
ping frameworks.

In the second part of the paper we show how the same problem can be
solved using ephemerons (Hayes 1997), or equivalently, Haskell's notion of weak
reference (which is not available on the Java or .NET platforms). However, the
garbage collection of a chain of ephemerons may take time quadratic in the
length of the chain. We therefore propose a symmetric version of ephemerons
(or Haskell weak references) and how to imple-ment it in a runtime system, and
show that this reduces worst-case gar-bage collection time from quadratic to
near-linear.

Keywords: Association, garbage collection, joint week array

TALK: Implementing Relationships in Whiley

David J. Pearce (Victoria University of Wellington, NZ)

Whiley is a simple programming language aimed primarily at safety-critical ap-
plications. The language provides �rst-class support for sets, lists and tuples,
and provides compile-time checking of constraints. The language has an impera-
tive outer layer, and a functional inner core. Relationships which are inherently
behaviour-oriented should be implemented within the imperative layer; in con-
trast, those which are purely of a structural nature should be implemented within
the functional core.

Keywords: Relationships, Associations, Programming Languages, Veri�cation

8 G. Boella, E. Meijer, D.J. Pearce, F. Steimann and F. Tip

TALK: Inference of Object Usage Protocols

Michael Pradel (ETH Zurich, CH)

Objects of certain classes are supposed to interact in certain ways. In doing
so, each object plays a particular role in an object collaboration. For example,
programmers using a collection and an iterator in Java must follow a method call
protocol specifying that hasNext() must be called before next(). Violating such
protocols can lead to program errors. Unfortunately, the method call protocols of
most classes are not explicit, and therefore, checking whether a program violates
them is di�cult. We present a dynamic program analysis that infers protocols
describing typical method call sequences on a set of collaborating objects. The
analysis tracks how existing programs use certain classes and infers typical usage
protocols. The inferred protocols can be used for API documentation as well as
for checking whether a program violates common usage patterns.

Full Paper:
http://mp.binaervarianz.de/ase2009.pdf

TALK: All you need is LINQ (well, almost all)

Friedrich Steimann (Fernuniversität in Hagen, DE)

It has often been complained that object-oriented programming languages lack
relationships as �rst-class language constructs. However, language-integrated
querying of objects suggests that relationships are not needed to access and
exploit data structures in a relational manner � pointers and collections, the
object-oriented way of representing relationships, can be queried using similar ex-
pressions. Based on a simple example, we identify two weaknesses of the pointers-
and-collections approach to relationships, and sketch an object-relational pro-
gramming model that eliminates these weaknesses. It turns out that roles, not
relationships, are the key abstractions of object-relational programming.

TALK: A Role-based Approach for Modular Language
Engineering

Christian Wende (TU Dresden, DE)

Modularisation can reduce the e�ort in designing and maintaining language spec-
i�cations. Existing approaches to language modularisation are typically either
focused on language syntax or on language semantics. We propose de�ning com-
position rules on the level of the abstract syntax metamodel, making it the
central artefact in a language module.

http://mp.binaervarianz.de/ase2009.pdf

Relationships, Objects, Roles, and Queries in Modern Languages 9

In the talk we discuss how role-based metamodelling provides clean interfaces
for such language modules-e�ectively making them language components and
how this supports the aspectual modularisation of language semantics and can
be integrated with concrete syntax speci�cations to build self-contained language
components. We introduce the implementation of our approach in the LanGems
language composition system and show how it is used to provide a modularised
de�nition of the Object Constraint Language (OCL).

Keywords: Language Composition Role Metamodeling Modularisation

TALK: Delegation Reconstructed

Erik Ernst (Aarhus University)

Delegation among objects is a well-known mechanism, e.g., from the language
Self, which is capable of expressing many di�erent concepts such as dynamic
roles, state changes, inheritance, etc. This talk explains how a certain idiom in
the language gbeta can be used to express a form of delegation without direct
language support for this mechanism. Built-in support for delegation will be
more concise and elegant, but this version serves to illustrate the basic structure
of the delegation concept and possibly refresh our view on what it is.

TALK: Relational Meta Modeling

Tijs van der Storm (CWI - Amsterdam)

We propose relations as a concept to reduce the impedance mismatch between
object-oriented models and algebraic data types in the context of model-driven
engineering (MDE). Initial experiments show that certain types of model analysis
and model transformation can be expressed in a very natural way if OO models
are encoded relationally.

TALK: Roles & Ownership

Tobias Wrigstad (University of Uppsala)

Role encapsulation aims at controlling accesses to multiple strands of a single ob-
ject by way of ownership types. Not giving a precise encapsulation property, it is
intended to facilitating programmer reasoning, rather than formal or automatic
veri�cation. Some ideas, some observations, some questions.

10 G. Boella, E. Meijer, D.J. Pearce, F. Steimann and F. Tip

TALK: The Use of Overloading in Java Programs

Keren Lenz (Technion - Haifa)

Method overloading is a controversial language feature, especially in the context
of Object Oriented languages, where its interaction with overriding may lead to
confusing semantics. One of the main arguments against overloading is that it
can be abused by assigning the same identity to conceptually di�erent methods.
This talk describes a study of the actual use of overloading in JAVA. To this end,
we developed a taxonomy of classi�cation of the use of overloading, and applied
it to a large JAVA corpus comprising more than 100,000 user de�ned types. We
found that more than 14% of the methods in the corpus are overloaded. Using
sampling and evaluation by human raters we found that about sixty percent of
overloaded methods follow one of the ?non ad hoc use of overloading patterns?
and that additional twenty percent can be easily rewritten in this form. The most
common pattern is the use of overloading as an emulation of default arguments,
a mechanism which does not exist in JAVA.

TALK: Multirole Session Types

Sophia Drossopoulou (Imperial College London)

We develop an object oriented calculus for multirole session types. The concept
of role is novel in session types, and allows several participants in one role.
Example applications are auctions, PC meetings, etc. We support sessions with
more than one role, and support conversations between all participants in one
role with all other participants of the corresponding roles. We develop a type
system. Further issues are participants joining/leaving a session, time-out and
exceptions.

TALK: Queries without Anomalies

Frank Tip (IBM TJ Watson Research Center)

Programming languages are starting to provide �rst-class language support for
querying. For example, the C# programming language contains LINQ, a col-
lection of features that enable programmers to write queries over data struc-
tures such as collections. The implementation of these queries may depend on
programmer-speci�ed notions of equality. When programmers make mistakes, a
number of inconsistent behavior may arise, which we call query anomalies. In this
presentation, we presented an alternative design based on relation types, a mech-
anism for specifying object identity in a declarative manner (previously published
at ECOOP'07). The proposed design does not su�er from query anomalies.

Relationships, Objects, Roles, and Queries in Modern Languages 11

TALK: Beauty Contest

Friedrich Steimann (Fernuniversität in Hagen, DE)

Aside from short presentations and tutorials, we will also be running a small
competition � a beauty contest, if you like � of actual programming language
extensions which introduce relationships, roles, queries, or what have you. The
idea is that participants who have developed, or are proposing, a particular lan-
guage extension can demonstrate their contribution on a standardized example,
so that results are better comparable. For this purpose, I have prepared a one-
page benchmark problem. In this introductory talk, I will highlight the main
issues involved.

DEMO: Rumer

Stephanie Balzer (ETH Zurich, CH)

We have designed the programming language Rumer, which provides explicit
support for classes (i.e., entities) as well as relationships. Rumer supports con-
tracts (method pre-/postconditions and invariants) as well as heap querying. We
have implemented a prototype compiler for the language which o�ers run-time
contract veri�cation. We present the main features of the language and provide
an overview of the compiler implementation.

DEMO: Whiley

David J. Pearce (Victoria University of Wellington, NZ)

Whiley is a simple programming language aimed primarily at safety-critical ap-
plications. In this demonstration, I will show a number of small programs written
in Whiley and demonstrate their constraints are being checked at compile time.
I will also show how the system can convert constraints into runtime checks.

	10152 Abstracts Collection Relationships, Objects, Roles, and Queries in Modern Programming Languages — Dagstuhl Seminar —
	 Guido Boella, Erik Meijer, David J. Pearce, Friedrich Steimann and Frank Tip

