
10191 Abstracts Collection

Program Composition and Optimization:

Autotuning, Scheduling, Metaprogramming and Beyond

� Dagstuhl Seminar �

Christoph W. Kessler1, Welf Löwe2, David Padua3 and Markus Püschel4

1 Linköping University, SE

chrke@ida.liu.se
2 Linnaeus University, Växjö, SE

welf.lowe@lnu.se
3 University of Illinois - Urbana, US

padua@uiuc.edu
4 Carnegie Mellon University, Pittsburgh, USA

pueschel@ece.cmu.edu

Abstract. From May 9 to 12, 2010, the Dagstuhl Seminar 10191 �Pro-

gram Composition and Optimization: Autotuning, Scheduling, Metapro-

gramming and Beyond� was held in Schloss Dagstuhl � Leibniz Center

for Informatics. During the seminar, several participants presented their

current research, and ongoing work and open problems were discussed.

Abstracts of the presentations given during the seminar as well as ab-

stracts of seminar results and ideas are put together in this paper. The

�rst section describes the seminar topics and goals in general. Links to

extended abstracts or full papers are provided, if available.

Keywords. Software composition, program optimization, components,

parallel computing, scheduling, auto-tuning, adaptivity, performance pre-

diction, library synthesis, meta-programming

10191 Executive Summary � Program Composition and
Optimization: Autotuning, Scheduling, Metaprogramming
and Beyond

Components are a well-proven means of handling software complexity. Reusable
components and software composition support the construction of large and
reliable software systems from pre-de�ned and tested partial solutions. When
maximizing reusability, we end up with components that are very general and
do not �t one particular scenario perfectly. Therefore, adaptation, especially
optimization, is established as a technique to deal with such mismatches.

Keywords: Software composition, program optimization, components, parallel
computing, scheduling, auto-tuning, adaptivity, performance prediction, library
synthesis, meta-programming

Dagstuhl Seminar Proceedings 10191
Program Composition and Optimization: Autotuning, Scheduling, Metaprogramming and Beyond
http://drops.dagstuhl.de/opus/volltexte/2010/

2 Christoph W. Kessler, Welf Löwe, David Padua and Markus Püschel

Joint work of: Kessler, Christoph W.; Löwe, Welf; Padua, David; Püschel,
Markus

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2010/2571

Program Composition and Optimization: An Introduction

Software composition connects separately de�ned software artifacts. Such con-
nection may be in program structure (such as inheritance), data �ow (such as
message passing) and/or control �ow (such as function calls or loop control).

Keywords: Software composition, program optimization, components, parallel
computing, scheduling, auto-tuning, adaptivity, performance prediction, library
synthesis, meta-programming

Joint work of: Kessler, Christoph W.; Löwe, Welf; Padua, David; Püschel,
Markus

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2010/2573

From modules, aspects to reusable composition operators

Mehmet Aksit (University of Twente, NL)

This talk introduces the aspect-oriented programming from the perspective of
our own contribution to this �eld.

In late 80's, we designed the Sina language; Sina introduced the concept of
interface predicates (OOPSLA'88), which generalized the object-oriented com-
position mechanisms such as aggregations, inheritance and delegation. One could
express a large set of composition mechanisms just by de�ning appropriate in-
terface predicates. This work can be considered as the �rst example of aspect-
oriented programming languages; every interface predicate can be seen as a do-
main speci�c aspect which implements message-dispatch based composition.

In begin 90's, the problem of inheritance anomaly was de�ned (Matsuoka,
Bergmans, etc.). It was found out that class inheritance as it is de�ned by OO
languages cannot inherit synchronization code as desired.

This was the start of discussions on software composition problems. As a
continuation of the work on the Sina language, and inspired by the work on in-
heritance anomalies, we have generalized the interface predicate concept to dif-
ferent domains such as synchronization, real-time, coordinated behavior (OOP-
SLA'92, ECOOP'92, ECOOP'94, JPDC'96); This approach was termed as the
Composition-Filters model, and since then, it has been adopted by a number of
practical languages.

Towards end 90's, the term aspect-oriented programming was introduced by
Kiczales. At that time there were several (about 4) aspect-oriented research

http://drops.dagstuhl.de/opus/volltexte/2010/2571
http://drops.dagstuhl.de/opus/volltexte/2010/2573

Program Composition and Optimization 3

languages available, each with di�erent ways of tackling the software composition
problem.

During 2000's, the Compose* language was de�ned and implemented, which
enhanced the Composition Filters model with new features such as prolog-based
composition designator and a set of built-in tools to verify the composed software
(CACM'02, AOSD'09). Compose* has some unique feature such as declarative
aspect speci�cations, clear separation of aspects from objects and components,
and implementation language independent composition language. Compose* can
also be considered as a multi-paradigm language, which combines imperative,
declarative and functional programming styles together.

During the last 2 years, we have been working on the Co-op language (AOSD'10),
which allows de�nition of reusable composition operators as �rst class entities
and it uni�es both object-based and aspect-based composition mechanisms to-
gether.

In this talk we also refer to the future work which we aim to carry out.

Keywords: Software composition aspect-oriented programming composition
�lters

FastFlow: high-level yet e�cient streaming applications on
multi-cores

Marco Aldinucci (University of Torino, IT)

FastFlow is an open source programming environment speci�cally targeting
streaming applications on cache-coherent shared-memory multi-cores (http://mc-
fast�ow.sourceforge.net). FastFlow is implemented as a stack of C++ template
libraries built on top of lock-free (and fence-free) synchronization mechanisms.

In FastFlow, di�erent layers are targeted to support di�erent kind of pro-
grammers. FastFlow can be directly used to set up an arbitrary network of
parallel activities (low-level programming layer); at this level, similarly to what
happens programming with POSIX threads, any orchestration of parallel activ-
ities can be expressed. However, as for POSIX threads, writing a correct and
e�cient program is a non-trivial activity.

At the next layer up (high-level programming layer), FastFlow provides pro-
grammers with a number of pre-de�ned parametric programming patterns (i.e.
skeletons); at this level, similarly to what happens programming with Intel TBB,
some orchestration of parallel activities can be expressed: programs are composed
by con�guring and combining patterns (skeletons), which carry a optimised im-
plementation; writing a correct and e�cient program at this level is fairly easy.

The FastFlow high-level skeletal layer can be further abstracted (using skele-
tons as object factories) to de�ne Problem Solving Environments (PSEs), which
are programming frameworks designed to ease the development of e�cient par-
allel applications in a speci�c domain. As an example, we are currently working
on the following PSEs: FastFlow software accelerator and self-o�oading; Paral-
lel Monte Carlo and Gillespie simulations (FastFlow Stochkit); Parallel macro

4 Christoph W. Kessler, Welf Löwe, David Padua and Markus Püschel

data-�ow interpretation with automatic parallelization feature supporting skele-
tal programming; a (blazing fast) parallel memory allocator.

The three described layers are thought for three kind of users, respectively:
FastFlow designers, skilled programmers (with some knowledge of parallel pro-
gramming), and casual programmers (e.g. application domain experts).

Keywords: Multi-core, parallel programming, streaming, skeletons, accelerator,
non-blocking, synchronization, lock-free, function o�oad

Safe Feature Composition

Sven Apel (Universität Passau, DE)

Feature-oriented software development (FOSD) is an emerging paradigm that
provides a multitude of formalisms, methods, languages, and tools for building
well-structured, customizable, and extensible software systems. The idea is to
decompose software along its end-user visible features and to generate tailored
software systems based on feature selections of users. The set of valid feature
combinations of a domain is called a software product line.

In this talk, I will give an overview of some recent developments in this
�eld. Especially, I will concentrate on recent attempts to ensure correctness
properties throughout the FOSD process. This includes work on type checking,
formal veri�cation, and feature interaction analysis of feature-oriented software
product lines.

Keywords: Feature-Oriented Software Development, Software Product Line,
Feature Interaction

Component-Based Software Engineering is like Bierkasten
Research

Uwe Assmann (TU Dresden, DE)

Component-based software engineering (CBSE) was initiated as a research �eld
at the �rst Int. Conf. on Software Engineering in 1968, pushed by a talk of
Doug McIlroy, in which he challenged his discipline to research into a component
technology for component-based software markets.

Over time, the CBSE discipline has discovered that component technology
needs component models and composition languages. Many such composition
systems have been developed, providing a component model, composition tech-
nique and composition language. These composition systems can be arranged in
a ladder, showing progress over time. The newer approaches (grey-box composi-
tions) do no longer work require black-box components, but allow for merging of
design-time components to run-time components, enabling the component-based
development of tightly-integrated systems.

Program Composition and Optimization 5

Finally, we present three research challenges for CBSE: weaving of parallel
aspects, reuse languages for language-independent composition, and multi-staged
composition.

Keywords: Software composition, component-based software engineering, com-
ponent models

See also: U. Aÿmann, Invasive Software Composition, Springer, 2003.

At the Heart of the Automation of Linear Algebra
Algorithms

Paolo Bientinesi (RWTH Aachen, DE)

It is well understood that in order to attain high performance for linear algebra
operations over multiple architectures and settings, not just one, but a family
of loop-based algorithms have to be generated and optimized. In the past we
have demonstrated that algorithms and routines can be derived automatically,
using a procedure based on formal correctness and classical formal derivations
techniques.

At the heart of such a procedure lie the Partitioned Matrix Expressions
(PMEs) of the target operation; these expressions describe how parts of the
output operands can be represented in terms of parts of the input operands.
The PMEs are the unifying element for all the algorithms in the family, as
they encapsulate the necessary knowledge for generating each one of them. Until
now, the PMEs were considered inputs to the derivation procedure, i.e., the
users had to provide them. In this talk we discuss how from a high-level formal
description of the operation it is possible to generate automatically even the
PMEs. We conclude demonstrating how automation becomes critical in complex,
high-dimensional, scenarios.

Keywords: Symbolic computations, PME, automation

Joint work of: Bientinesi, Paolo; Fabregat, Diego

Management of non functional concerns in component
applications

Marco Danelutto (University of Pisa, IT)

We discuss the problem of autonomic management of non-functional features in
component based parallel computations. We show that a single non functional
concern (such as performance, security, power management, fault tolerance, etc.)
can be e�ciently managed when the structure of the parallel component com-
position is known using a rule based MAPE control loop.

6 Christoph W. Kessler, Welf Löwe, David Padua and Markus Püschel

A single non functional concern may be even better managed if a hierarchy of
managers is considered, modeled after hierarchical composition of components
using well know parallel composition patterns.

When tackling co-management of multiple non functional concerns, several
problems have to be solved, related to the coordination of independent autonomic
manager decisions.

We discuss preliminary results de�ning a common ground to be agreed/shared
among independent autonomic managers to ensure feasibility of manager coop-
eration, as well as simple distributed agreement protocols ensuring that coordi-
nated decisions can be taken and ine�ectively ones avoided.

Keywords: Structured parallel programming, autonomic management, control
loop, self tuning

Joint work of: Danelutto, Marco; Aldinucci, Marco; Kilpatrick, Peter, Xhagijka,
Vamis

Automatic Generation of SIMD-Vectorized DSP Kernels

Franz Franchetti (Carnegie Mellon University - Pittsburgh, US)

SIMD Vector instruction set extensions like SSE and AVX, AltiVec/VMX, and
the Larrabee new instructions o�er the potential of high performance gains by
providing �ne-grain parallel operations on subwords. These extensions provide
2-way to 16-way single-precision and 2-way to 8-way double-precision vector
units, as well as integer vector support. Many compilers have vectorization and
SIMDizing support and provide substantial speed-up. Among the leading com-
pilers are Intel's C++ compiler, the GNU C compiler, IBM's XL C compiler, and
the PGI compiler. However, for computational kernels from the signal process-
ing domain, compiler-based utilization of SIMD instruction sets does not provide
the possible speed-up. The major reason is that the arithmetic density of ker-
nels like the fast Fourier transform is low, i.e., O(n log n) operations for O(n)
data. Thus, the cost of vector shu�e operations is substantial, and developers of
high-performance libraries often resort to hand-tuned assembly code (or C code
with SIMD intrinsics) to obtain the necessary performance.

Spiral (www.spiral.net) is a program and hardware design generation system
for linear transforms such as the discrete Fourier transform, discrete cosine trans-
forms, �lters, and others. For a user-selected transform, Spiral autonomously
generates di�erent algorithms, represented in a declarative form as mathemat-
ical formulas, and their implementations to �nd the best match to the given
target platform. Besides the search, Spiral performs deterministic optimizations
on the formula level, e�ectively restructuring the code in ways unpractical at
the code or design level.

In this talk we present Spiral's SIMD vector code generation framework. It
is based on a high-level structural model of SIMD instructions, a rewriting en-
gine that uses backtracking search to span a space of fully vectorized algorithms,

Program Composition and Optimization 7

and empirical search in this space to pick the best (autotuned) implementation.
Moreover, architecture-speci�c rewriting rules �ne-tune the instruction selection
process. Spiral's vector code generation for the FFT and DCTs �rst uses short
vector algorithm variants that ensure a low shu�e count, with all shu�es local-
ized in a small number of small building blocks. The most important of these
building blocks are automatically generated from the instruction set speci�ca-
tion, using algebraic identities or superoptimization.

Structural Scoping of Behavioral Variations

Robert Hirschfeld (Hasso-Plattner-Institut - Potsdam, DE)

Context-oriented Programming, or COP, provides programmers with dedicated
abstractions and mechanisms to concisely represent behavioral variations that
depend on execution context. By treating context explicitly, and by directly
supporting dynamic composition, COP allows programmers to better express
software entities that adapt their behavior late-bound at run-time.

So far, most COP language extensions (including ours) solely support dy-
namic or global scoping of behavioral variations. While working on several ap-
plications, we realized that these scoping strategies, while interesting in several
application scenarios, need to be complemented with others. One such strategy
is structural scoping.

In our talk we will illustrate these concepts, their application, and their
implementation by developing a sample scenario, and demonstrate that they are
largely independent of other commitments to programming style.

Keywords: Context-oriented Programming, COP, Run-time Adaptation, Struc-
tural Scoping, Behavioral Variations

See also:
http://www.hpi.uni-potsdam.de/swa/

See also:
http://www.hpi.uni-potsdam.de/swa/cop/

Tool Demo: Reuseware Composition Framework

Jendrik Johannes (TU Dresden, DE)

In this tool presentation we demonstrate the Reuseware Composition Framework
that is an open-source model and code composition tool for the Eclipse platform.

Reuseware allows language developers to extend modelling and programming
languages to support new kinds of components (e.g., aspects). Language users
can then use the tooling o�ered by Reuseware inside Eclipse in combination with
other modelling tools. We demonstrate both the tooling for language developers
to quickly add component support to an arbitrary language and and the tooling
for language users to specify and compose model components.
Keywords: Software composition

http://www.hpi.uni-potsdam.de/swa/
http://www.hpi.uni-potsdam.de/swa/cop/

8 Christoph W. Kessler, Welf Löwe, David Padua and Markus Püschel

Access/execute metadata for composition in multicore and
manycore applications

Paul H. J. Kelly (Imperial College London, GB)

"Access/execute decoupling" is really the essence of what people mean by stream-
ing - the ability to separate access to data from the computation part, and ideally,
to express the mapping from points in the kernel's iteration space to data loca-
tions explicitly, and declaratively. This talk will present some instances of this,
what we have called the "AEcute" model, in image processing and unstructured-
mesh CFD. AEcute functions as a unifying intermediate representation for sev-
eral di�erent domain-speci�c manycore tools we are developing - and is perhaps
also a useful model for programming directly. Along the way I'll show a couple of
di�erent domain-speci�c program generation tools we're working on, and show
how they succeed in isolating high-level algorithmic concerns from architecture-
speci�c optimisation choices - and that raising the level of abstraction can yield
cleaner code *and* higher performance.

Context-aware Composition

Welf Löwe (Linnaeus University - Växjö, SE)

To maximize their reuse in di�erent contexts, library components come in vari-
ants. Variants range from di�erent algorithms and data-structures implementing
a certain component interface to di�erent numbers of processors and schedules
used for the implementation.

Variants induce di�erent qualities of the component and, hence, the composed
system. Qualities are non-functional properties like execution time, the system's
footprint size, memory and energy consumption, required number of processors
etc.

Software composition becomes an optimization problem: �nd the best-�t vari-
ants for a system. What is considered the optimization goal, i.e., the de�nition
of �best�, depends on the system requirements. For instance, the goal could be to
optimize performance or memory consumption or a merger of the two. Even the
optimization of some qualities under the constraints that others hold a threshold
is possible. However, in general, it is impossible to select the best-�t variant in
a static composition process. The performance, e.g., is usually data-dependent
which is unknown before runtime.

Context-aware composition is a novel software composition technique which
composes variants of components dynamically. Based on a composition context
situation evaluated at runtime, context-aware composition selects and invokes
the best-�t component variant. What the best-�t variant is for a certain context
situation for a certain optimization goal is pre-computed in a training phase
before runtime, e.g., when the system is deployed, using training data. The

Program Composition and Optimization 9

training infrastructure and the training data are designed statically, just like the
test infrastructure and test data are today.

We present an approach that generates context-aware, optimized compo-
nents.

The search space contains combinations of implementation variants of al-
gorithms, their schedules to processors and the data structures used including
dynamically switching and converting between them. Based on pro�ling, the
best implementation for a certain context is precomputed at deployment time
and selected at runtime.

In our experiments, the context-aware composition approach outperforms the
individual variants in almost all cases.

Keywords: Dynamic composition, optimization

Joint work of: Löwe, Welf; Kessler, Christoph

See also: C. Kessler, W. Löwe: Optimized composition of performance-aware
parallel components. Proc. 15th Int. Workshop on Compilers for Parallel Com-
puters (CPC-2010), Vienna, Austria, 2010.

Making Parallel Programs Auto-Tunable: A View From
Software Engineering

Victor Pankratius (KIT - Karlsruhe Institute of Technology, DE)

Multicore systems with several processors on a chip have arrived on every desk-
top. Software developers need to write and optimize parallel programs for perfor-
mance. This contribution presents several case studies of complex non-numerical
programs, showing that automatic performance tuning will become indispens-
able in the software engineer's portfolio. The results show that software architec-
ture information can be exploited to automatically prune the search space and
improve performance on di�erent software abstraction layers. Moreover, paral-
lel code becomes easier to write and its quality improves (e.g., with respect to
readability, portability, hard-coded optimizations, maintenance, debugging).

Program Composition for Performance Portability with
PEPPHER

Sabri Pllana and Jesper Larsson Trä� (Universität Wien, AT)

PEPPHER is a newly started EU FP7 project on enhancing programmability
and performance portability for heterogeneous many-core architectures.

We outline the aims of the project, and discuss the role of software component
composition towards realizing the goals of PEPPHER (www.peppher.eu).

10 Christoph W. Kessler, Welf Löwe, David Padua and Markus Püschel

Keywords: PEPPHER, (performance) portability, annotation, composition,
run-time, autotuning, libraries

Joint work of: The PEPPHER Consortium, www.peppher.eu

Computer Generation of General Size Linear Transform
Libraries

Markus Püschel (Carnegie Mellon University - Pittsburgh, US)

The development of high-performance libraries has become extraordinarily dif-
�cult due to multiple processor cores, vector instruction sets, and deep memory
hierarchies. Often, the library has to be reimplemented and reoptimized, when
a new platform is released. In this paper we show how to automatically generate
general input-size libraries for the domain of linear transforms. The input to our
generator is a formal speci�cation of the transform and the recursive algorithms
the library should use; the output is a library that supports general input size, is
vectorized and multithreaded, provides an adaptation mechanism for the mem-
ory hierarchy, and has excellent performance, comparable to or better than the
best human-written libraries.

Keywords: Automatic performance tuning, library generation, high-performance
computing, decision trees, statistical classi�er, machine learning, fast Fourier
transform, FFT

Joint work of: Yevgen Voronenko, Frédéric de Mesmay and Markus Püschel

Full Paper:
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=129

See also: Proc. International Symposium on Code Generation and Optimization
(CGO), pp. 102-113, 2009

Autotuning

Markus Püschel (Carnegie Mellon University - Pittsburgh, US)

We give a small introduction to autotuning.

Keywords: Software, performance optimization

Scheduling and auto-tuning techniques in the context of
time-stepping methods

Thomas Rauber (Universität Bayreuth, DE)

In this talk, we discuss how scheduling algorithms and auto-tuning techniques
can be integrated into time-stepping methods.

http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=129

Program Composition and Optimization 11

For a parallel execution, this allows a re-organization of the mapping of com-
putations to execution resources dynamically between time steps to adapt the
execution to the workload of the execution platform.

The basis for such a re-organization are task-based and block-based formula-
tions of the computations, which do not a priori �x the mapping to the resources
of the execution platform.

As example for time-stepping methods, we consider solution methods for ordi-
nary di�erential equations, which typically perform a large number of sequential
time-steps.

The STAPL Parallel Container Framework

Lawrence Rauchwerger (Texas A&M University, US)

The Standard Template Adaptive Parallel Library (STAPL) is a parallel pro-
gramming infrastructure that extends C++ with support for parallelism. STAPL
provides a run-time system, a collection of distributed data structures (pCon-
tainers) and parallel algorithms (pAlgorithms), and a generic methodology for
extending them to provide customized functionality.

Parallel containers are data structures addressing issues related to data parti-
tioning, distribution, communication, synchronization, load balancing, and thread
safety. In this talk we will present the STAPL Parallel Container Framework
(PCF), which is designed to facilitate the development of generic parallel con-
tainers. We introduce a set of concepts and a methodology for assembling a pCon-
tainer from existing containers and data distribution information. The STAPL
PCF distinguishes itself from existing work by providing a large number of ba-
sic data structures (e.g., pArray, pList, pVector, pMat, pGraph, pMap, pSet)
and allowing users to compose and customize existing pContainers for improved
application expressivity and performance.

We evaluate the performance of the STAPL pContainers on a CRAY XT4
massively parallel processing system. We show that the pContainer methods,
generic pAlgorithms, and di�erent graph applications, all provide good scalabil-
ity on more than 10K processors.

Keywords: Parallel, STAPL, STL, container, distributed

Programming support for applications structured by
parallel tasks

Gudula Rünger (TU Chemnitz, DE)

The programming with parallel tasks is a suitable programming technique to
implement parallel applications consisting of a set of well-de�ned submodules.

12 Christoph W. Kessler, Welf Löwe, David Padua and Markus Püschel

In this programming model, the application can be coded as a parallel pro-
gram with mixed parallelism in which the submodules represent parallel tasks
each of which can be executed on one or more processors of the target platform.

To facilitate the programming with parallel tasks, the speci�cation of a par-
allel task program can be separated from its actual execution.

Suitable scheduling and mapping algorithm can then be employed to �nd an
e�cient implementation variant for a speci�c parallel platform.

Invasive program composition using aspects

Mario Südholt (Ecole des Mines de Nantes, FR)

Software composition frequently requires the de�nition ("extraction") of compo-
sition interfaces for functionalities that previously have been implicit. We present
recent results supporting such invasive composition tasks using aspect-oriented
programming, corresponding formal foundations and applications to the compo-
sition and optimization of sequential and distributed programs.

Architectural programming using invasive distributed
patterns

Mario Südholt (Ecole des Mines de Nantes, FR)

Software composition frequently requires the de�nition ("extraction") of compo-
sition interfaces for functionalities that previously have been implicit. We present
recent results supporting such invasive composition tasks using aspect-oriented
programming, corresponding formal foundations and applications to the compo-
sition and optimization of sequential and distributed programs.

Programming models and autotuning for generalized
n-body problems

Richard Vuduc (Georgia Institute of Technology, US)

I outline our on-going e�ort to build a programming model and parallel software
infrastructure for an important class of computations known as generalized n-
body problems (GNPs; Gray & Moore, NIPS 2000). GNPs appear in both the
physical sciences and in massive-scale data analysis, and prominent examples
include the fast multipole method (FMM) for particle physics, and k-nearest
neighbor search and kernel density estimation for data analysis.

The key development challenge our work addresses is that an "optimal" im-
plementation of a particular GNP solver on current multicore and manycore
systems requires a complex combination of careful data layouts, vectorization,

Program Composition and Optimization 13

mixed precision, and automated algorithmic and code tuning. We present a de-
tailed example in the context of the FMM, including a surprising �nding in the
debate on the performance and energy-e�ciency of general-purpose multicore
CPU vs. GPU processors.

This talk is joint work with a cast of characters from applied math, machine
learning, and HPC, including Alex Gray, George Biros, Sam Wiliams, Lenny
Oliker, Aparna Chandramowlishwaran, Ryan Riegel, and Aashay Shringarpure.

Optimizing and tuning the fast multipole method for
state-of-the-art multicore architectures

Richard Vuduc (Georgia Institute of Technology, US)

This work presents the �rst extensive study of single- node performance opti-
mization, tuning, and analysis of the fast multipole method (FMM) on modern
multicore systems. We consider single- and double-precision with numerous per-
formance enhancements, including low-level tuning, numerical approximation,
data structure transformations, OpenMP parallelization, and algorithmic tun-
ing.

Among our numerous �ndings, we show that op- timization and paralleliza-
tion can improve double- precision performance by 25× on Intel's quad-core
Nehalem, 9.4× on AMD's quad-core Barcelona, and 37.6× on Sun's Victoria
Falls (dual-sockets on all systems). We also compare our single-precision ver-
sion against our prior state-of-the-art GPU-based code and show, surprisingly,
that the most advanced multicore architecture (Nehalem) reaches parity in both
perfor- mance and power e�ciency with NVIDIA's most advanced GPU archi-
tecture.

Joint work of: Chandramowlishwaran, Aparna; Williams, Samuel; Oliker,
Leonid; Lashuk, Ilya; Biros, George; Vuduc, Richard

See also: IPDPS'10

	10191 Abstracts Collection Program Composition and Optimization: Autotuning, Scheduling, Metaprogramming and Beyond — Dagstuhl Seminar —
	 Christoph W. Kessler, Welf Löwe, David Padua and Markus Püschel

