
 1

The event processing manifesto

Written by the participants of
the 2010 Dagstuhl seminar on
event processing

http://www.dagstuhl.de/10201

Dagstuhl Seminar Proceedings 10201
Event Processing
http://drops.dagstuhl.de/opus/volltexte/2011/2985

 2

TABLE OF CONTENTS
PREFACE..5
EXECUTIVE SUMMARY ...6
Chapter 1: Why event processing? ..7

1.1 What is event processing?..7
1.2 Who should read this? ...7
1.3 Origins of event processing ..8
1.4 Problems solved by event processing...8

1.4.1 Manufacturing Execution systems ..9
1.4.2 Location-based services ... 10
1.4.3 Algorithmic trading .. 10
1.4.4 Defense intelligence... 11

1.5 Criteria for adopting an event processing approach.................................... 12
1.6 Benefits... 15

1.6.1 Event processing systems provide information faster............................ 15
1.6.2 Event processing systems improve the quality of available information ... 15

1.7 Benefits of event processing systems .. 16
1.7.1 Operational changes can be made sooner, making them more effective .. 16
1.7.2 Radically new, time-sensitive business practices made possible 17
1.7.3 Timely information dissemination leads to better decisions.................... 18
1.7.4 Staff cost is reduced by offloading work to computers 19

1.8 Build-versus-buy .. 19
1.9 Summary – the value of event processing .. 21

Chapter 2: What are the characteristics of event processing? 22
2.1 What do we mean by event processing?... 22
2.2 Characteristics of event processing applications .. 23
2.3 Event processing application requirements ... 23

2.3.1 Event Input/Output ... 24
2.3.2 Data Reduction ... 24
2.3.3 Reasoning: ... 24
2.3.4 Context awareness ... 24
2.3.5 Logging and analysis ... 25
2.3.6 Prediction... 25
2.3.7 Learning and Adaptation... 26
2.3.8 Distribution .. 26

2.4 Non-functional requirements .. 26
2.4.1 Performance ... 26
2.4.2 Availability and Recoverability ... 27
2.4.3 Consistency and Integrity in a distributed system 28
2.4.4 Security and privacy .. 28
2.4.5 Usability/Maintainability/Manageability ... 29

2.5 Modeling event processing applications ... 29
Chapter 3: Synergies and relations to other areas ... 31

3.1 An event-driven theft detection as an example of synergies and relations to
other areas ... 31
3.2 Synergies and relations of event processing and analytics 31

3.2.1 Learn and discover event processing patterns with predictive analytics ... 32
3.2.2 Implementing and executing predictive models with event processing 34
3.2.3 Incorporate predictive models in event processing 34

3.3 Synergies and relations of event processing and active rules (ECA) 34
3.4 Synergies and relations of event processing and publish-subscribe approach. 35

3.4.1 Integrating publish-subscribe with event processing 36

 3

3.5 Synergies and relations of event processing and business process management
(BPM) ... 37

3.5.1 Implementing BPM with event processing ... 37
3.5.2 Monitoring processes with event processing .. 37
3.5.3 Influencing business processes with event processing 37

3.6 Synergies and relationships of event processing and data streams............... 38
3.6.1 Brief overview of streams ... 38
3.6.2 Relationship of Streams to Event Processing 39

3.7 Event processing and business rules management systems (BRMS)............. 40
3.8 Summary ... 40

Chapter 4: Event processing related standards.. 41
4.1 The EP standards reference model .. 41

4.1.1 Business and technical perspectives... 41
4.1.2 Domain-specific and general standards... 42

4.2 Standards per the ESRM classification.. 43
4.2.1 Common standards and laws... 43
4.2.2 Domain reference model... 43
4.2.3 Domain use case ... 43
4.2.4 Strategy... 43
4.2.5 Functional model .. 43
4.2.6 Computer-independent model ... 43

4.3 Platform independent model standards (PIM).. 44
4.4 Standards in ESRM areas:.. 45
4.5 Next steps (action items) ... 47

Chapter 5: Grand challenge: The global event processing fabric and its applications
.. 48

5.1 The Event Processing Fabric grand challenge .. 48
5.2 Event Processing Fabric implementation issues ... 49

5.2.1 The Fabric .. 49
5.2.2 Quality attributes... 50
5.2.3 Business and societal adaptation ... 50

5.3 Applications utilizing the Event Processing Fabric 51
5.4 Elements of the challenge .. 51
5.5 Related work.. 51
5.6. Summary ... 52

Chapter 6: Near-term research ... 53
6.1 Event semantics ... 53

6.1.1 Probabilistic events.. 53
6.1.2 Provenance .. 54
6.1.3 Event context ... 54

6.2 Events and actions.. 54
6.2.1 Complex actions.. 55
6.2.2 Goal-directed reaction.. 55
6.2.3 Compensation and retraction .. 55
6.2.4 Predictions and speculations ... 56
6.2.5 Adaptive event processing .. 56

6.3 Event processing systems .. 56
6.3.1 Function placement and optimization ... 56
6.3.2 Consistency .. 57

6.4 Privacy and security .. 57
6.4.1 Access control... 57
6.4.2 Authenticity of events .. 58
6.4.3 Privacy .. 58

 4

6.3 Summary .. 58
REFERENCES ... 59

 5

PREFACE

The second Dagstuhl seminar on event processing took place in May 2010. This five-
day meeting was oriented to work toward a comprehensive document that would
explain event processing and how it relates to other technologies and suggest future
work in terms of standards, challenges, and shorter-term research projects.

The 45 participants came from academia and industry, some of them out of the
event processing field. The teams continued the work after the conference and have
summarized their findings in this document. The chapters were written by different
teams and then edited for consistency.

The chapter team leaders were: Robert Berry (Chapter 1), Peter Niblett (Chapter 2),
Arno Jacobsen (Chapter 3), Paul Vincent (Chapter 4), Bernhard Seeger (Chapter 5),
and Patrick Eugster (Chapter 6). The Dagstuhl seminar was organized by Rainer von
Ammon, Mani Chandy, and Opher Etzion (who served as editor for this document);
the technical editing was done by Sharon Geva.

The following people participated in the seminar:

Rainer von Ammon, Darko Anicic, Stefan Appel, Jean Bacon, Robert Berry, Pedro
Bizarro, Andrey Brito, Simon Brodt, Francois Bry, Alejandro Buchmann, Sharma
Chakravarthy, Badrish Chandramouli, Mani Chandy, Christoph Emmsersberger,
Opher Etzion, Patrick Eugster, Dieter Gawlick, Annika Hinze, Martin Hirzel, Mark
Horsburgh, Arno Jackobsen, Boris Koldehofe, Alexander Kozlenkov, Wolfgang May,
Daniel Meiron, Ken Moody, Peter Niblett, Adrian Paschke, Udo Pletat, Olga Poppe,
Tore Risch, Harold Shcoening, Roy Schulte, Bernhard Seeger, Marco Seirio, Guy
Sharon, Plamen Siemonov, Florian Springer, Nenad Stojanovic, John Sutcliffe-
Braithwate, Richard Tibbetts, Ronen Vaisnberg, Paul Vincent, Agnes Voisard,
Christian Wolff, Carlo Zaniolo, and Holger Ziekow.

All participants contributed to this document.

This role of this document is twofold:

To educate the public about event processing, since it is a relatively new area
To call for action to the community in the areas of standards and further research
One of the highlights of the seminar was the establishment of an event processing
grand challenge. We believe that the current applications based on event processing
technology just scratched the surface of its potential; the grand challenges offers a
focus to make the quantum leap in the impact of event processing on the world.

 6

EXECUTIVE SUMMARY

Event processing (EP) is an area in the field of information technology that is central
to many systems on which our society depends. These systems include energy,
healthcare, the environment, transportation, finance, services, and manufacturing.

Event processing consists of methods and tools to filter, transform, and detect
patterns in events, in order to react to changing conditions, typically under some
time constraints.

We present this document to introduce the area of event processing, explain its
pertinence to other fields, and to provide information to enable relevant business
opportunities. We also aim to establish guidelines for how event processing can fit
into current standards and to put forth short- and long-term goals for event
processing professionals in industry and academia.

Event processing systems perform the following four main functions:

Obtain data from multiple sources in real or near-real time
Aggregate and analyze this data to detect patterns that indicate the presence of
critical situations requiring a response
Determine the best response for such situations
Monitor the execution of that response
Why is event processing of increased importance now, when even the earliest rule
engines and business processes had mechanisms used to detect critical situations
and respond accordingly?

Today's world is much more dependent on IT systems than it ever was. All of us are
much more interconnected and interdependent than ever. Systems must be able to
react to events anywhere on the globe. An outbreak of Ebola on one continent, for
example, demands a response in countries everywhere. Responses must occur ever
quicker, sometimes in milliseconds, as the pace of the stock exchange illustrates.

The costs of inappropriate responses can be staggering, as we see in the cases of
certain defense applications. In many telecommunication systems, the volume of
data that must be analyzed in near-real time is torrential. In addition, the variety
and types of data that must be analyzed in event processing systems is enormous.
Such data may be in the form of structured text, natural language, images, audio, or
video. The data may be delivered to the system, or it may have to be extracted by
the system. In many systems, security is an overarching concern.

Coming decades will see many more applications with event processing capabilities,
as society demands smarter ways for managing electric power, water, health, retail
and distribution, traffic, and safety—smarter meaning responding better and faster
to changing conditions. The interconnected nature of the modern world means that
researchers, designers, and students can no longer develop event processing for a
single domain, such as the smart grid, without incorporating developments related to
event processing technologies in other domains, such as smart healthcare. To step
up to these challenges, we are in urgent need of event processing theory, design
methods, and tools. This document is an important step toward that goal.

 7

Chapter 1: Why event processing?
In this chapter, we provide an introduction into event processing and describe our
motivation for pursuing research in this field. We also provide insight into the value
of using an event-driven approach in various systems.

1.1 What is event processing?
Today’s information society abounds in myriad information flows, computer-based
human collaborations, software agent interactions, electronic businesses, and the
explosion of data on the Internet. Understanding what is happening in these
environments is becoming increasingly difficult. In other words, we need to find the
best ways to make sense of this wealth of data, to improve the quality and
availability of information, and to ensure effective responses.

An event is anything that happens [Chandy 2009]. In an information society, flows
of data can be seen as streams of observable events. Event-driven systems provide
automation to allow the events to be interpreted and correlated, and support the aim
of delivering a timely response. Event processing is a set of techniques and tools that
help us understand and control event-driven systems [Luckham 2002]. The key idea
is to explore temporal, causal, and semantic relationships among events to make
sense of them in a timely fashion. This reveals opportunities and threats as soon as
they emerge or can serve to diagnose and execute decisions in time constrained
fashion.

Most businesses today actively monitor vast quantities of event data to make
automated decisions and take time-critical actions. Event processing provides real-
time visibility in a wealth of event data and enables responsiveness in decision-
making processes. A fundamental characteristic of events is that they cannot be
entirely foreseen [Chandy 2009]. Given that fact, we cannot predict when a critical
event will happen. What we can do is ensure that the response is provided with
minimum latency. Timeliness is one of the essential requirements in many of the
event processing applications.

Event processing has emerged as a substantial new field of software engineering and
computer science over the last ten years. It is now one of the fastest growing
segments in enterprise middleware software, with products provided by major
software vendors and many start-up companies around the world. Given this
phenomenon, we examine why event processing is emerging now (and not some
time before). We then classify categories of problems that can be solved by event
processing and consider the typical complexity drivers in each of these categories.
We examine the benefits of using this technology and the costs associated with it.
Finally, we discuss the buy-versus-build issue to provide some guidelines for
successful adoption of this technology.

1.2 Who should read this?
This document is directed toward several key stakeholders in event processing.

In particular, end users should read this to gain insight into the value that the event
processing approach provides to solving real business problems. You will learn what
the unique characteristics are that make a problem ideally suited to being solved by
this approach as well as the costs and benefits of using this approach, as compared
to alternate approaches.

We also address the broad applicability of event processing and explore the criteria
for and benefits of applying its approach to distinct problem types. Architects and

 8

analysts can use this document to help enable them to recognize cases in which the
event processing approach should be applied.

1.3 Origins of event processing
The concept of event processing is older than computing itself. Doing work in
response to events, whether it is the receipt of postal mail, the ringing of a fire
alarm, or the declaration of war, is a natural part of our society and economy. But
recent years have seen a dramatic increase in the number of observable events, in
the need for timely responses, and in the automation of those responses. The
automation of markets, factories, and communication means that events that were
previously inaccessible to computing are now available for processing.

Electronification has also led to people expecting more timely responses to their
needs. A six- to eight-week delivery process or a three-day wait for telephone
activation no longer meet people's expectations. To achieve timely responses that
are acceptable, operations that were previously accomplished by people and
paperwork are being implemented with software and electronic communication.
Companies today are operating at a faster pace, so the ability to handle more
observable events in a short time is increasingly important. The amount of available
event data is rapidly expanding as well, because of the decreasing costs and
increasing speed of computers and networks and the unifying power of the Internet
and its communication standards [Chandy 2009]. The end result of these changes is
the emergence of many new systems that are required to process potentially vast
quantities of data in a timely fashion and to make complex automated decisions
based on the information available to them.

Event processing is experiencing an evolution from bespoke, customized, ad hoc
designs into an established computing paradigm, just as other technologies have
done before. Techniques and computing architectures such as report generation,
client-server protocols, and web services all started with customized
implementations based on older technology. Over time, best practices and design
principles for these systems emerged and were integrated into specialized computing
platforms, just as they are now for event processing. Today, a variety of established
event processing technologies exist, as do a range of open research problems to be
resolved. But as these technologies are improved upon, and problems are explored,
many common characteristics have emerged.

Event processing offers a standardized and optimized way to implement event-based
applications. While building systems that process events using traditional computing
architectures is certainly possible, meeting the requirements of modern systems this
way can be difficult. Using event processing, organizations are able to react more
quickly and are able to handle more data and more detailed information, thus
making better decisions based on more sophisticated logic.

1.4 Problems solved by event processing
To understand why organizations are selecting an event processing approach for
implementing advanced IT solutions, we must consider application areas that have
already benefited from employing this technology. We must also understand the
characteristics of the applications for which event processing technology has been
selected.

In application areas like production monitoring and control systems, location-based
services, algorithmic stock trading, or logistics control, we can observe a trend away
from the traditional client-server interaction model. In this model, the client pulls

 9

information from a server toward a more loosely-coupled, event-based interaction
pattern, in which partner applications emit information in an asynchronous push
mode.

This shift toward more asynchronous push interactions is supported by an event-
driven architecture pattern. This pattern supports event transport and processing as
a programming paradigm. This applies to external interactions of a system as well as
to system-internal component interfaces. This shift is illustrated in Figure 1.1.

A closer examination into the kinds of applications mentioned above reveals the
reasons for shifting from request-response mode to event driven mode.

1.4.1 Manufacturing Execution systems
Manufacturing execution systems (MES) are the heart of production processes in
various industries. Both discrete and continuous production processes interact with
the production machinery directing the production proper. Event processing can be
used in MES systems to detect anomalies and determine if significant changes
relative to assumptions that require re-planning and predict future events and states
have taken place. Event processing in MES systems functions as a subsystem that
should interact with the rest of the system. This space of production machinery is an
event source emitting condition information about production equipment and
processes asynchronously. To enable this interaction, an event processing layer can
be found in the majority of MES. This event processing layer is a natural fit for the
interface between the manufacturing execution and the plant floor control systems.
Using a client-server interaction mode, in which the MES queries production status
information from the plant floor, would invert this natural role-split since the MES
would become the client for the plant floor control system would logically have to
play the server role. An asynchronous push interaction from the plant floor control
systems to the manufacturing execution system allows for maintaining the view that
the MES is the server, with the plant floor control systems being the clients who feed

Figure 1.1: Event-driven interaction

 10

information into the MES. The asynchronous push mode from the plant floor systems
to the MES appears to be the model of choice. Compared to the client-server pull
mode, it also saves one half of the client-server interaction cycle, which allows for
better performance of the event-based interaction pattern. Speed of reaction is
important in the MES context, as the plant floor systems operate at a much higher
speed than the MES. Therefore, a client-server interoperation model between the
MES and the plant floor control systems would impose implementing server
capabilities in the plant floor systems, slowing them down considerably. So this
production execution space nicely shows why an event processing approach is
superior to a request/response-based client-server architecture.

1.4.2 Location-based services
Another area for applying event-driven application architectures is location-based
services, in which location sensors, such as active radio frequency identification
(RFID) tags, mobile phones, and Wi-Fi enabled devices feed information about their
spatial location into server-side systems. These location feeds trigger services
depending on the spatial location of the client, like notifying transportation status for
shipped goods through RFID signals, searching for a restaurant from a mobile phone,
or tracking goods in the supply-chain and feeding respective management
applications, for example.

Also in these applications, as in the production control space, imagining how the
event-driven information push delivery mode from the devices to the servers could
be inverted to a client-server based information pull mode is difficult. In a client-
server based information pull mode, the servers contact the clients to request
location and status information. While in the manufacturing space the production
machinery are known event sources, in many location-based services, the sensors
delivering location information are not necessarily known a priori to the servers.
Thus, server-side location-based service applications typically interact with an a
priori anonymous set of clients, which do not necessarily know the servers to which
they want to deliver information. This information-delivery-only mode distinguishes
event-oriented location-based services from standard Internet applications in which
anonymous clients access a server they know in order to retrieve information.

1.4.3 Algorithmic trading
Financial data systems, whether in markets and trading or in surveillance and fraud
detection, have dramatically changed over the last 20 years, due to new electronic
business processes and increased service expectations of market participants. Many
of the new business processes are fully automated through IT systems, for which an
asynchronous approach seems to be the most natural—and in many cases the only
possible—approach.

Algorithmic trading relies fast decision making based on observations of market
activities. Large numbers of market prices for financial products are typically emitted
to all market participants simultaneously and with low latency. Successful market
participants need to react in (quasi) real-time, using digital trading systems
implementing their investment strategies. Therefore, the event-based information
dissemination imposes an event processing approach on modern financial IT
systems, in which (quasi) real-time market analytics can hardly be implemented in
conventional client-server architectures. Recent years have shown that event
processing is the right approach for coping with the large amounts of information
pushed into the data clouds of financial markets.

 11

1.4.4 Defense intelligence
Over the last 50 years, military intelligence has transitioned from an information-
poor environment, in which gathering information was the chief concern, to an
information-rich environment. Today, the number of sensors, satellites, and soldiers
is pervasive, and the need to present a timely, correct, and integrated view of the
information they provide is a critical factor for effectiveness.

Figure 1.2 illustrates some examples of application domains and summarizes the
type of functions for which event processing systems are enablers. This is
summarized in [Etzion 2010].

The five different functions from Figure 1.2 are described below, followed by an
example of a system in which event processing could perform each function:

Active diagnostics: finding the problem based on symptoms, example: network and
system management
Real-time operational decision: reaction to event within time constraints, example:
algorithmic trading in financial markets
Predictive processing: predicting future events and proactively mitigating undesired
events and exploiting opportunities, example: rerouting due to traffic problems.
Observation systems: observe exceptional behavior (such as KPI threshold
breaching) and notify in various ways, example: BAM systems

Figure 1.2: Types of functions in event processing

 12

Information dissemination: subscriptions to particular information that can be
filtered, transformed, or derived from streaming events, example: personalized
notification from financial data.
A particular application may intend to satisfy more than one of these functions.

1.5 Criteria for adopting an event processing approach
An event processing approach is ideally suited for applications delivering situational
awareness and response, with a combination of the following requirements:

The system(s) under control/observation is event-driven, with a high volume of
events representing accumulating, incremental state change
Timely action is required—in some cases, that action must have the potential for
immediate effect
The application has a high degree of complexity as measured by any of the following
factors:
1. Degree to which the application is expected to change over time, e.g., with new

event sources, new interactions and new responses expected

2. Numbers and types of event sources

3. Numbers of consumers of information communicated in the events

4. State and context management

5. Opportunity to create new value, e.g., by introducing reflection and introspection

The event data can be made available in electronic form
There is a continuous evolution of requirements, e.g., new event sources/types or
new response opportunities
Some applications that do not meet these criteria may also benefit from this
approach, but the benefits might be less significant.

Event volumes and timeliness are two factors that most typically influence the
selection of an event processing approach. However, other complexity factors can
motivate this decision as well. In Table 1.1, we summarize this in a simplified
decision table that shows areas in which event processing can be particularly
applicable.

 13

In this table, event rates refer to the rate of input events to the systems. Application
complexity refers to the five criteria listed above, and timeliness refers to the level of
importance of the reactions meeting time constraints.

Event
driven
nature

Event
Rates

Application
complexity

Timeliness
Recommended
for event
processing

Examples

High

High High High Yes
Advanced
algorithmic
trading

Medium/
High

High

High

Low

Depends on the
type of
complexity and
the secondary
benefits of
improved
timeliness

Supply chain
management
(SCM), fleet
management

High High Low High Yes
Order
routing

Low/Medium High Low Low

Limited event
processing
capabilities such
as filtering may
be sufficient

Possibly
suited to
business
activity
monitoring

 High Low High High Yes

Earthquake
detection
using
distributed
low cost
sensors
(low average
rate, high
bushiness)

Low Low High Low
No; Compute-
heavy
transaction

Low Low Low High
No; Use
messaging
system

Low Low Low Low No

Table 1.1: Event Rates, timeliness, and other complexity drivers

 14

Event-driven applications sometimes need to process large volumes of data and
enable appropriate reactions using sophisticated logic. The following measures of
complexity also motivate an event processing approach:

Degree of importance of timeliness: The effectiveness of a response depends on its
timeliness. For example, a tsunami warning issued after a tsunami strike has little
value. Event processing is a valuable technology in applications in which the value of
a response to an event decays with increased response time. The more rapid the
decay, the higher value of the technology. Certain applications (e.g., algorithmic-
trading applications) would not exist today if a high-value response was not related
to timeliness. On the other hand, event processing is also valuable in applications in
which timeliness is not the most critical complexity driver. Therefore, examining
other complexity drivers is also worthwhile, as discussed below.
Intensity of event data volumes: Event processing provides intelligent analysis of
streaming data (events) in a timely fashion. As the amount of available data in
digital form is rapidly increasing, the challenge becomes yielding the intelligent
analysis on larger volumes of data. Event processing offers concepts and tools that
provide on-the-fly analysis on large volumes of data.
Frequency of application requirement changes: In a typical lifecycle of a business
application, its requirements frequently change. The changes happen due to the
need to meet new customers’ requirements or new government regulations. For
whatever reason, business requirements change, and the complexity of the
application may also increase with these changes. Event processing systems offer a
high-level abstraction layer, in which changing an existing event pattern or adding a
new one may significantly influence businesses strategy. Hence, frequently changing
event patterns provides a means to cope with frequent requirement changes.
Number of event types: Handling interactions among different parts of an
application, or interactions among distributed applications may be a tedious task.
Communications of one-to-one or one-to-many may be also hard to manage. In
event-driven systems, different interactions and communications are modeled with
different event types. By publishing definitions of event types to all interacting
components, we can effectively increase transparency of the communication and
ease the application integration. Moreover, we improve manageability of complex
applications. We can also respond to rapid changes of interactions by changing event
types.
Number of consumers of events: Publish/subscribe is a messaging paradigm in event
processing, in which senders (publishers) of messages are not programmed to send
their messages to specific receivers (subscribers). Publishers are loosely coupled to
subscribers and need not even know of their existence. This mechanism may
therefore enable greater scalability in applications in which a large number of event
consumers (subscribers) exist, as well as in applications in which a more dynamic
network topology among consumers is required.
State and context management or rule interdependencies (including complexity of
queries): Real-time applications with many interactions are difficult to understand
and program. Event processing is a set of techniques meant to help us understand
and control such systems. It provides abstractions to cope with these complexities.
These abstractions are used for capturing business situations that we want to
monitor. That is, they enable a business user to express high-level business goals,
hiding away the complexity of the event-driven interactions.
Opportunity for the introduction of new value, e.g., reflection, introspection, or
retraction: Having an event as a first class citizen in a real-time programming model
opens new horizons and challenges. For example, we can make new-generation
applications dealing with the following: inexact event processing (i.e., uncertain data

 15

stream processing), out-of-order event processing (i.e., processing of delayed
events), introspection (i.e., inspecting why a certain business event happened and
why another, expected one, has not), event retraction (i.e., retracting erroneously
recorded events and computing revisions on detected complex events), and so forth.
In general, the presence of these factors renders the event processing approach
beneficial. Event processing has evolved to address these kinds of challenges. Tools,
analysis, and modeling methodologies have been developed, and together with event
processing run-time environments (middleware), a compelling case for event
processing is emerging.

1.6 Benefits
Enterprises use event processing to improve the performance of their business in
many ways, including increasing revenue, lowering costs, reducing risk, and
complying with regulation. The essential role of event processing is to provide
information that leads to faster and better decisions, as compared to decisions based
on the use of traditional applications, management reports, or business intelligence
(BI) initiatives. Event processing enables sense-and-respond behavior, in which
incoming information is used to sense the current situation and a person, device, or
automated component responds in a timely fashion.

1.6.1 Event processing systems provide information faster
Such systems act on a new event as soon as it arrives. The receipt of event data
triggers computation immediately, in contrast to traditional applications and business
intelligence systems, which are either time-driven or request-driven. Time-driven
and request-driven systems store data when they arrive, and processing is triggered
later by a clock (in a time-driven system) or by a request from a person or computer
program (in a request-driven system). This postpones the computation and therefore
defers the response.

Event processing software minimizes processing time by keeping most data in
memory and using data structures that are designed to facilitate fast access. Many
calculations are incremental. Event processing systems also implement other
strategies to minimize excess code path, context switches, and other overhead.

1.6.2 Event processing systems improve the quality of available
information
Event processing systems combine information from many data points to generate
new insights. They also use algorithms and rules to process event data that they
have received from one or more sources during some time period. The systems also
generate summary-level facts (complex events) and put them in context to identify
threats and opportunity situations. Event processing systems apply a variety of
techniques that are particularly appropriate for handling event data. These
techniques include provisions for dealing with time windows, such as events that
occurred within a few minutes of one another, or events that occurred within the
most recent few seconds, minutes, or hours. Event processing systems have ways to
identify events that cause other events to happen (causality).

As a rough guideline, alerting systems, reports, and dashboards that must
recalculate in ten minutes or less are likely to require event processing approaches.
Applications that run less frequently can generally be implemented by traditional,
periodic IT architectures. However, even some of those applications would run faster,
consume less computer resources, and be easier to develop if they were

 16

implemented using continuous event processing, particularly if they deal with
temporal or causal relationships among the event data.

1.7 Benefits of event processing systems
The speed and information-generating capabilities of event processing systems lead
to four kinds of benefits:

Operational changes can made sooner, making them more effective
Radically new, time-sensitive business practices are made possible
Better information leads to better decisions
Staff cost is reduced by offloading parts of work to computers
These are explained in the subsequent four sections.

1.7.1 Operational changes can be made sooner, making them
more effective
In many aspects of company operations, managers can achieve an economic benefit
by fine-tuning the way work is done to more closely match current conditions.
Companies reduce their costs or increase their revenue by implementing
management decisions earlier, rather than making the same or similar changes later
(see Figure 1.3).

For example, customer contact centers were traditionally managed by means of daily
reports. These reports provided statistics on call volume, customer on-hold wait
time, call duration, transferred calls, dropped calls, and whether the customers’
issues were resolved in the first phone call. Contact center managers and supervisors
used the reports to decide whether to bring in more agents, adjust staff

Figure 1.3 Value of having operational management information sooner

 17

assignments, modify the call scripts, or change other aspects of their day-to-day
operations. Over time, contact centers began moving to hourly reports to enable
more frequent, intra-day adjustments, rather than making the changes on a daily
basis. If call volume and wait times grew, agents on outgoing calls could be switched
to incoming calls, remote agents could be added to the available work force, or other
aspects of the operation could be modified. Idle agent time was reduced and
customer service levels were enhanced, but further improvement was still necessary.

Today, many contact centers have moved to continuous monitoring, based on event
processing. Sophisticated customer relationship management (CRM) analytic suites
incorporate real-time dashboards with graphical displays that update every minute,
providing near-real-time visibility into the state of the contact center. Supervisors
can spot problems as they emerge, analyze root causes, and quickly make changes.
This minimizes wasted time and staff cost and maximizes customer service and long-
term company revenue. If data indicate that an individual agent has had several
problematic calls in a row, a supervisor can be alerted to give the agent an early
break to recover.

Other examples in which event-based monitoring systems improve the timeliness of
operational management decisions include airline operations and supply chain
management systems.

1.7.2 Radically new, time-sensitive business practices made
possible
Event processing enables some radically new business processes that were
previously impractical because the necessary information could not be obtained in a
timely manner. Event processing systems can collect and analyze a large body of
data relevant to a current situation fast enough to affect individual transactions still
in process.

Figure 1.4 Value of information to affect individual transactions

 18

For example, agents and supervisors in a customer contact center can use
information derived from event data to adjust their treatment of a customer while he
is still on the phone. An agent dealing with a customer who has been transferred
several times or has been on hold for more than five minutes can be prompted (and
allowed) to give additional compensation for the negative experience. The contact
center software may also generate screen pops, messages that prompt agents to ask
customer-specific questions to drive up-selling or cross-selling.

Alternatively, a supervisor could become involved in a call if an agent is struggling.
Systems must generate alerts within a few seconds if the goal is to enable
intervention in a call that is still in progress (see the line plot on the right in Figure
1.4). After 30 seconds, the window of opportunity to affect that transaction has
closed.

Similar kinds of improvements are found in fraud-detection systems, customer
experience management systems in gambling casinos, and mobile telephone
provisioning systems.

High frequency and other algorithmic trading systems in capital markets are even
more time-sensitive. Some trading strategies require that buy and sell decisions be
made within a few milliseconds, because the opportunity would be gone when prices
change slightly, or when a competitor has grabbed the deal. In such cases, merely
performing event processing well is not enough—the company must do it faster than
its competitors. A particular calculation can be worth hundreds of thousands of
dollars if action is taken within a few milliseconds but be worthless 10 or 20
milliseconds later (see the line plot on the left in Figure 1.4). These systems must be
fully automated; involving a person in an individual trade could not be done in time.
In fact, a person takes 100 milliseconds just to type one character into a keyboard.
Similarly, to be effective, some military weapons and defense systems must also
operate using such extreme response times.

1.7.3 Timely information dissemination leads to better
decisions
The information provided by event processing systems is often impossible or
impractical to obtain through any other means. Event processing systems can quickly
extract and distill the information value from dozens, thousands, or even millions of
data points. From these data, EP systems can produce alerts, key performance
indicators, or other metrics to aid in decision making. By contrast, a person, without
the assistance of EP systems, can directly assimilate only a few data points at a time,
and thus cannot consider nearly as many factors when making a decision.

For example, companies that manage large fleets of trucks get raw information
about the location of all of their trucks through GPS systems. Basic fleet
management systems can display truck locations on maps so dispatchers can know
the location of each truck. However, such massive volumes of data can make
spotting situations that require attention difficult. Event processing systems can
easily compare each truck’s location against its planned itinerary and raise alerts for
the few trucks that are far from their expected locations, or for trucks that are within
minutes of being ready to load, unload, or require some other kind of attention.

Event processing systems are typically used to implement management-by-exception
strategies. They reduce the volume of unwanted data, known as information glut,
presented to people. In some cases, a system may run for hours or days, turning
millions of base data points into thousands of complex events before detecting a
single complex event that must be brought to the attention of a person. People are

 19

disturbed less often, so they can reserve their attention for the few situations in
which their involvement is important.

The need to deal with high volumes of current event data is emerging in many
applications and industries, including the following examples.

Track-and-trace systems can report the history of pharmaceuticals from factory to
patient to combat theft and drug counterfeiting and to conform to regulations. Such
systems may save detailed event history data for millions of packages, for months or
years. They can retrieve and correlate the data when a question about a particular
item or a batch of goods is raised.

Context-aware, location-based services in mobile telephone networks use event
processing to track the locations of hundreds of thousands of subscribers
simultaneously. The system can notify a person if someone in her group is nearby,
by finding matches among millions of data points.

Network security systems use event processing to detect patterns that indicate
denial-of-service attacks or various forms of fraud, such as poaching and spoofing
user IDs or theft of service.

Package delivery services scan millions of packages several times per day using bar
code or RFID readers to monitor and report the history, current location, and
projected delivery time of every box or envelope.

In all of these examples, the information value in each individual data point may be
small, but the value of accurately distilling a large amount of data into a few
significant, complex events is enormous. Computers do not succumb to boredom, so
they make fewer mistakes than a person (even given that he had the time and
ability to do the computations). Computer calculations are consistent and repeatable,
because they always implement the same algorithms in the same way, as defined by
knowledge workers, analysts, and software developers.

1.7.4 Staff cost is reduced by offloading work to computers
Some applications can be done fast enough and well enough by humans, but can be
done at a lower cost by event processing systems. EP systems offload the drudgery
of repetitive calculations and pattern detection comparisons from people to
computers in many scenarios, including in the following two examples.

The spread of algorithmic trading systems has reduced the number of human traders
operating on certain categories of investments in capital markets. Traders still
formulate the strategies and rules that are executed by the trading systems at run
time, and traders also still carry out more complex, dynamically-determined trades,
and monitor the performance of the automated systems.

The number of people monitoring the operations of airlines, shipping fleets, and
trucking companies has also been cut in some areas, because EP systems enable
each person to track more vehicles.

The amount of decision making that should be offloaded to EP systems varies
depending on the business problem. Managers and knowledge workers can delegate
as few or as many tasks as they see appropriate to the software.

1.8 Build-versus-buy
Build-versus-buy remains a major issue in the event processing market. Any event
processing application can be implemented with standard programming languages
and tools, and before the emergence of commercial event processing platform

 20

products, all applications that needed EP capability used application-specific (build)
code to do so. Build EP logic was still used in about 95% of EP applications in 2010,
because most event processing applications have relatively infrequent changes and
modest requirements regarding throughput, latency, and rule complexity. However,
this is changing, as organizations begin to recognize the non-linear rise in costs as
change must be introduced, and begin to appreciate the competitive advantage that
timeliness (and other differentiators) can deliver.

This tradeoff can be considered in light of three stages of maturity—manual, build (or
adapt), and buy (e.g., using existing EP technology), as illustrated in Figure 1.5.

The curves represented in this figure are actually quite generic and can apply to any
new technology and accompanying services capability. The purple curve represents a
manual approach, meaning without the use of EP systems, and the green curve
represents the build option, while the blue curve represents the buy option. The
curves reflect the non-linear increase in costs associated with rising complexity. They
acknowledge that adopting a manual approach for simple applications (hiring more
people to monitor telephones or computers, for example) might be easier than
adapting an EP system, but that at some point, the introduction of new challenges
will render a manual approach unaffordable.

Such challenges could be in the form of higher event rates or more event types. A
build approach might be considered as the first upgrade from a manual system, in
which custom software is developed, but again, the complexity of managing that
stack and the probable lack of flexibility to address new opportunities will eventually
have the same result. An enterprise should consider moving to the next phase when
the complexity rises and makes the upgrade cost-effective.

Figure 1.5. Cost vs. complexity in use technologies

 21

We believe that more demanding, high-volume/low-latency applications are
increasingly likely to use the buy approach, namely by employing commercial-off-
the-shelf (COTS) event processing technology

Table 1.2 illustrates some considerations in the build-versus-buy decision.

 Build Buy

Pro

• Purpose-built
• Simplicity
• Lower learning

curve

• Lower time to
benefit

• Greater flexibility
• Time to change is

lower
• Existence of

Support/Tools/Servi
ces

Con

• Cost of
development if the
application is
complex

• Lack of flexibility
• Higher risk
• No services

available

• Cost of acquisition if
the application is
simple

• Cost of integration
to existing systems

• Vendor risk

Table 1.2: Build-versus-buy table

1.9 Summary – the value of event processing
This section surveys some considerations in answering the following questions:

When does it make sense to use an event processing approach?
In which cases does using generic event processing software suffice?
The main factors that support using the event processing approach are:

Use of an application that includes some event-driven requirements (a response is
required following certain events)
The applications event-driven requirements are relatively complex
Timing constraints apply to the required responses
Complexity is often the crucial factor, since satisfying requirements using
conventional programming abstractions may be difficult. But in some cases, the
timeliness of reactions is an important consideration as well.

 22

Chapter 2: What are the characteristics of
event processing?
This chapter examines more deeply what we actually mean by the term event
processing. In the following sections, we expand on our general definition of the
term and address the kinds of problems that event processing can be used to solve.
We then describe a set of characteristics common to these event processing
applications.

2.1 What do we mean by event processing?
We start with some terminology.

Event processing: This can be broadly defined to be any computing that performs
operations on events. Common event processing operations include reading,
creating, transforming, and deleting events. They can also include the distribution
and dissemination of events among participants in a distributed computing
system. The term can refer to specific software or hardware that does the
processing, or to the subject area as a whole. Processing of events is usually done
with the purpose of meeting some kind of application goal, leading to our next
definition.
Event processing application: This is an application of event processing to solve a
particular problem, or more generally, any computer application that embodies
principles of event processing.
Event processing platforms: These refer to systems and tools that help develop, run,
manage and maintain event processing applications. These are frequently used to
take some of the burden of programming event processing off of the author of the
application.
Event processing involves two main ideas:

Processing events to gather meaningful or valuable information and then
deriving actions from them:
The events in question usually represent some aspect of something that occurred in
the real world. The significance often arises from the combination of many events,
rather than any single event, and time is often important. The information conveyed
in a set of events often depends on the order in which they occurred, and/or the time
at which they occurred

The value of information may well depend on the timeliness with which it can be
supplied to a consumer, varying from consumer to consumer and depending on
external circumstances, such as the state of the overall system.

Disseminating or distributing the events:
This idea refers to capturing events and then transporting them to the consumers
who need them, ensuring that the appropriate intermediate processing is performed
on them. Disseminating and distributing is also about getting the right information to
the right consumers at the right time.

The distribution process serves to decouple the event producers and the event
consumers, so that event producers do not need to be aware of the physical
addresses/identities, or even the existence, of the consumers. In many cases, the
consumers are not concerned with the identities or addresses of the producers. This
decoupling (often achieved using a publish/subscribe paradigm) allows event
processing applications to evolve over time, in a flexible way. Further event

 23

producers, consumers, or event processing functions can be added without
disrupting existing users or functionality.

As well as transporting event messages, an event distribution system might need to
provide adapters. Adapters allow other applications to act as event producers or
consumers. Distribution systems also frequently provide mechanisms to advertise
the availability of events or to allow consumers to register their interest in particular
event types.

A large scale event processing application might involve thousands of event
producers or consumers, dispersed over a wide geographic area, as in a track and
trace application monitoring a supply chain, for example. Such an application might
have to handle tens of thousands of events per second. So some applications need
an event distribution system that can scale to handle high event volumes and large
geographic areas, and possible to also span multiple types of communication
technology—private networks, public internet, wireless mobile networks, or wireless
sensor networks, for example.

2.2 Characteristics of event processing applications
The rationale for event processing is that it facilitates the design and implementation
of a certain class of computing applications, which we call event processing
applications. So what exactly is an event processing application?

First and foremost, these applications are centered on the ideas of events and
actions. Such event can be ingested from the outside world, generated by the
application itself, or derived from the processing of these events. Applications are
frequently event-driven, in that events are pushed through the system and are
processed as soon as, or soon after, they occur. In some cases, events may be
stored in a database or log for subsequent retrieval and further processing, but the
initial processing is still immediate.

The way in which events are processed in an event processing application is
influenced by the context in which the events occur. In many applications, the
temporal context—either the absolute occurrence time, or the ordering of events
with respect to one another, or both—is very significant.

As we noted in the previous section, event processing applications may involve large
numbers of event producers and consumers, which are often distributed over many
systems. These systems might have differing communications capabilities and might
be dispersed into widely different geographic locations. An application may also need
to distribute its processing of events over multiple machines to achieve throughput
and latency objectives. As such, event processing applications can be heavy users of
concurrent processing techniques.

Some event processing applications are highly dynamic. Event volumes may vary
over time, and the nature of the processing may vary depending on the interests of
the consumers or the nature of the incoming events. In addition, event producers
and consumers may come and go during the execution of the application.
2.3 Event processing application requirements
We now enumerate the main functional capabilities required by event processing
applications. Event processing applications come in many shapes and sizes, and as
such, not all applications will necessarily use every capability listed in this section.
Also, a capability can be implemented either natively by the application, or provided
for that application by an event processing platform.

 24

2.3.1 Event Input/Output
Most applications need some way to ingest events from external event producers.
These could be hardware sensors, software probes, external data streams (such
as stock prices) or news feeds, event logs, or files of pre-recorded events.

Similarly, applications need a way to output events to external consumers. This
can be performed by actuators, business applications and processes, and event
logs, for example.

2.3.2 Data Reduction
The process of extracting information from events often involves techniques that
reduce the amount of data contained in the ingested events. These techniques
include:
Filtering: This refers to eliminating entire events as un-interesting, either by nature
of the event or according to some other metadata associated with the event (such as
its producer) or to the values of attributes contained in the event. Some applications
use sampling filters, which select a subset of incoming events, to achieve a particular
data rate without regard to other criteria.
Projection: This means reducing the size of an event by discarding some of its
attributes (for privacy reasons, for example).

Aggregation: This refers to combining a set of events by extracting one or more
attributes from each and performing some kind of computation on these attributes
(averaging or calculating the minimum or maximum, for example).

2.3.3 Reasoning:
The techniques used to extracting derived events out of the raw events include:

Transformation: This is the process of taking an event and producing a new one
that presents more meaningful information. This information can be derived by
analyzing the data contained in the original event (such as car license plate
recognition), or it can be derived with the help of some external data source (a
database of customers, for example).

Aggregation: In addition to their role in data reduction, aggregation operations can
be used to derive additional information (counting event arrivals, for example) or to
eliminate errors and noise from incoming events.

Pattern detection: This is a type of processing that examines a collection of events
and looks for matches or other patterns among them. The presence of such a pattern
often signifies something of more importance than the raw events themselves. A
special case of pattern detection is absence detection, in which the fact that a given
event did not occur in a particular time period is of itself significant.

2.3.4 Context awareness
The way in which events are processed, including the data reduction and
reasoning operations we have just mentioned, often requires taking into account
the context in which the events occurred. This context can involve one or more of
the following:

Segmentation using A key attribute (or combination of attributes) of the event;
This is frequently used to identify an external entity to which the event relates, for
example, the ID of a patient wearing a health monitor, or the stock ticker symbol in
a trading application. We refer to this as a segmentation context.

 25

The state of an entity external to the event processing application: This could
be an entity referred to directly by the event. We would expect, for example, a
person’s heart rate to be different depending on whether she is resting or
exercising. This could also refer to something more general, such as the weather
conditions where the event occurred or the state of the business in a business-
oriented application.

The location at which the event occurred, or its proximity to other related
events

The time at which the event occurred, or its temporal relation to other related
events

2.3.5 Logging and analysis
Applications frequently keep a record of some or all of the events they receive
and of the derived events they generate. This can be used for audit purposes, for
retrospective event processing (revisiting precursor events when examining a
problem, for example), or to allow offline analysis.

Logging: A history store keeps a log of events that can be later queried.

Provenance tracking: This extends the history store to include information about
how each logged event came to be produced. In particular, if the event was one that
was derived by the event processing system itself, this information could include the
events and derivation process that gave rise to them.

Visualization of event data: Most event processing applications include some kind
of visual display of raw and/or derived events. This can be the primary purpose
of the application, as seen in many monitoring or customer-facing track and trace
applications, or it can be a tool used in development, testing, problem
determination, or operational management. Business activity monitoring and
network and system monitoring tools provide sophisticated dashboards for
display of visual information. Map-based mashups are a popular way to display
location-specific events.

2.3.6 Prediction
Event processing applications are sometimes used to make predictions about the
future.

Predictive pattern detection: This can be used to look for specific patterns that
indicate when an event is likely to occur. In particular, applications can be used to
detect anomalous patterns that suggest a problem is likely to occur. For example, a
traffic management system that could spot that gridlock is about to occur is more
useful than one that can only detect that it has already occurred. The patterns used
(and any parameter thresholds contained in them) have to be carefully chosen to
avoid too many false positives or false negatives.

On-line scoring: Events, or collections of events, are pre-processed using the
techniques we have already addressed and are then passed to a scoring engine,
which runs them against an appropriate data-mining model. This process can be
used to assign a probability rating to the occurrence of a future event.

 Simulation: Another way to predict the future is to use a computer model that
simulates the domain being studied and to feed real-life events (after some pre-
processing) into that model.

 26

2.3.7 Learning and Adaptation
In many applications the operations performed on events are specified by human
beings, either by the programmers responsible for designing the application, or
by users of the application who supply rules specifying some or all of the
processing to be performed. However, machine learning and similar techniques
are being increasingly used for event processing, particularly in applications used
for making predictions.

Pattern discovery refers to the automated generation of the event patterns to be
looked for by subsequent pattern detection. One approach is to run offline analytics
against a log of stored events

Building a scoring model: Applications that use online scoring need a model for
that scoring. These models can be built by feeding them events from the event
processing system and can be adapted over time by feeding back predicted and
actual results. This will reduce the incidence of false positives and false negatives.

Application evolution: Event processing applications often must evolve over time.
The volume and the nature of raw input events available to the application can
change. In addition, the required processing, such as the patterns being detected,
can vary—either in response to new user requirements, or in response to situations
being detected by the EP application itself.

2.3.8 Distribution
Last, but not least, event processing systems must ensure that events are
transported from the places where they are detected to the place or places where
the event processing occurs. EP systems must also ensure that any outcomes from
that processing are delivered to the right places.

Routing: This means ensuring that incoming events are routed to the right
processing logic, and that output events are routed to the consumers of those
events. In simple cases, this routing is static, meaning that the routes are defined
when the application is developed and only change if the application is explicitly
modified. In contrast, dynamic routes can be created, deleted, or modified while the
application is running, either as a result of user interaction or as a result of situations
detected by the application itself.

Partitioning: Event processing can itself be distributed across multiple servers. One
common approach is to partition the work across a horizontal cluster of servers and
to route events to the appropriate server. In addition, processing such as data
reduction can be performed as part of the event distribution process. This allows this
function to execute close to where the events are detected, reducing overall network
traffic.

2.4 Non-functional requirements
Non-functional requirements are concerned not with what the event processing
application or platform has to do, but rather with describing how well it needs to do
it. These requirements apply both to the event processing and to the event
distribution aspects of an event processing application. They can be grouped into the
following areas:
2.4.1 Performance

Performance requirements can relate to an entire flow through an event
processing application, or just to a particular part of it.

 27

Response time measures the timeliness, or latency, of the event processing and
distribution. You might be concerned about the time taken between detecting an
event and displaying it on a dashboard, or the time taken to detect a particular
pattern. Response time requirements can be expressed in terms of:

• An upper bound of acceptable response time

• The average desirable response time

Predictability: A variance of other measure of predictability—in some applications,
predictability and consistency of the latency for all events is more important than the
overall speed, if a high average response time would mean that some response are
very fast and some are slow

Scheduling of work and delivery of results: Multiple consumers using an event
processing application can be in contention with one another. The system many need
to assign priority to its workloads, to ensure that critical processing is not delayed by
less important work. In some cases, such as trading applications, fair treatment of a
large group of consumers, meaning that no one consumer gets priority over others,
is critical.

Throughput: (often expressed as events per second) specifies the rate of incoming
events that the application must be able to handle, without compromising response
time or other requirements.

Scalability and Elasticity: Scalability is the ability of a system to handle growing
workloads in a graceful manner, possibly with the provision of additional hardware or
other resources. Elasticity is the ability of a system to scale up or down without
requiring application redesign or significant operator intervention. Event processing
workloads include:

• The number of event producers and consumers;
• The complexity of the processing to be performed—such as the number of

operations, and the frequency at which they execute;
• The number of output events (actions) that are produced (Consider a system

that is performing pattern detection (if the patterns being looked for occur
frequently in the input events, then the system workload will be higher than
in a system in which many of the input events can be quickly filtered out;

• The input event throughput and the complexity (including size) of the input
events;

• The amount of event and other data that needs to be stored

2.4.2 Availability and Recoverability

Event processing applications typically run for extended periods of time, so the
ability to sustain long term work loads is often important. This includes:

Tolerance of hardware and software faults and network failure

Ability to recover the system after a failure or major disaster

Continuous operation: the ability to effect a planned change to the application
while it is still running

 28

2.4.3 Consistency and Integrity in a distributed system
Performance and scalability requirements, and the simple fact that event
producers and consumers are often located in different places, mean that most
event processing applications involve multiple servers and multiple threads of
execution within each server.

Many of the operations used in event processing are influenced by the time at
which events occur, or by the relative order in which they occur. Implementing
these operations in a distributed system involves some challenges. First, we must
define what we mean by simultaneity. Second, we must address the issue of
communication delays (including network breakages) when events are detected
by different servers. Third, we must address the non-determinism that is
introduced by the use of multiple parallel processing threads.

Different applications have different requirement in these areas, including the
following:

Temporal granularity: This is the precision to be used for timestamps and time
comparisons.

Repeatability: This requirement addresses the issue—if two copies of the event
processing application were to be running side by side against the same set of input
events, the same set of outputs should be generated in both cases.

Consistency: When multiple event consumers exist, is there a requirement that the
events sent to one consumer should be consistent with those sent to the other.

Relevance and Quality of the output events: The usefulness of an event
processing application depends on the quality of the events that it produces. This can
be influenced by many factors, including the following:

• The precision and accuracy of the input events

• The event processing logic used by the application, particularly when the
application is performing prediction

• The availability, consistency and integrity issues mentioned above

• The location at which the application is being used to detect or predict
anomalous situations is an important metric is the rate of false positives or
false negatives. In addition, some applications provide a probability to the
events that they derive.

2.4.4 Security and privacy
Event processing systems are frequently used to make decisions that have a
tangible effect on a business or on a wider community, thus, protecting them
against cyber-terrorists or other subversive attacks is crucial. This process
involves:

Controlling event producers access so that only authorized parties can be
producers of events Checking the events submitted by these authorized parties to
make sure that they are only introducing events to which they are entitled to do

Controlling application logic access to ensure than only authorized users can
specify event processing logic and configure the system

These systems sometimes have to handle confidential data, including sensitive
personal information, and in some cases, the application is used to derive further

 29

information about individuals. This involves a further set of requirements,
including the following:

Controlling consumers access so that only authorized parties can be consumers
of events

Anonymization: Providing the ability to anonymize or remove sensitive data fields

Auditing: Providing auditable logs of the processing performed and data transmitted
to third parties

In addition, the standard requirements expected of secure computing systems also
apply, including the following:

Resistance to tampering: Ensuring that communication links are resistant to
tampering and providing confidentiality where needed

Data protection: Ensuring data persisted to storage media is protected

Code protection: Ensuring that the system code and any application logic are
protected from unauthorized access

2.4.5 Usability/Maintainability/Manageability
Many important considerations fall under this heading. First, requirements on the
languages and tools must be used to define the event processing logic, as
follows:

Usability: The authoring tools must appropriate to the kinds of user who will be
defining or maintaining the logic, be they IT professionals, engineers, medical staff,
business managers, the general public, or anyone else.

Versatility: The authoring tools must allow contributions from multiple stakeholders
with different backgrounds.

Expressiveness: The language needs to scale to allow complex applications to be
developed and for these applications to be maintainable, including the tools used to
help check the correctness of applications.

Maintainability: In addition, event processing platforms must be manageable from
an operational perspective, particularly as many event processing applications run
for an extended period of time. Considerations include: Ease of adding new
producers, consumers, processing logic or servers; Ease of managing the security
aspects of the system; Monitoring the running of the system itself, and the event
producers that are feeding events to it; Tools to help diagnose and fix problems; and
disaster recovery processes and tools.

Tradeoffs must often be made among the objectives listed in this section. In some
cases, a tradeoff of these objectives against the function requested of the application
must be made. Adaptive load-shedding is an approach that balances these
objectives. In this approach, an event processing platform stops performing less
important event processing operations to ensure that it can meet the performance or
other requirements of more important applications or users.

2.5 Modeling event processing applications
Modeling event processing applications is an important part of the application's
lifecycle. Figure 2.1 [Etzion 2010] shows an example of such a modeling system.

 30

An event processing application model should specify the following:

The types of events used by the application and semantic metadata associated
with them
The producers and consumers of events, and their relation to the event
processing logic that makes up the application (In figure 2.1, this is shown as an
event processing network, made up of event processing agents, representing the
operations performed on events by event processing logic. Producers and consumers
are linked via channels showing the flow of events.)
Context definitions (Many event processing operations depend on the context in
which the event occurred, as mentioned in Section 2.3.)
Stateful data (This models data that is read or written by event processing logic as
it handles events that flow through the event processing network Stateful data can
include the following:

1. Historical event logs and stores,
2. State of entities external to the event processing application,
3. Shared processing state used by the application itself,
4. Reference data used to validate and enrich events.

 Preferences (The preceding items all model functional requirements of the
application. In addition, the model should record the critical non-functional
requirements that we listed in section 2.4.)

More information about the requirements for event processing systems can be found
in [Chandy 2009] and [Etzion 2010].

Figure 2.1. An event processing modeling for an event
processing network

 31

Chapter 3: Synergies and relations to
other areas
Event processing systems and infrastructure do not exist in a vacuum, but rather
entail many interactions with other technologies and computing paradigms. When
considering the appropriateness of event processing for a given problem,
understanding the salient differences between event processing and alternative
technologies is helpful. The best approach to a problem may require blending event
processing with supporting or complementary technologies. Understanding the
differences and overlapping areas between these technologies and event processing
is particularly useful in these cases.

3.1 An event-driven theft detection as an example of
synergies and relations to other areas
The development of an event-driven sense and respond infrastructure can have an
enormous impact on responses to everyday events in society.

Consider, for example, the occurrence of a theft of merchandise in a store. Loss of
merchandise (known euphemistically as shrinkage in the retail industry1) accounts
for a significant loss of revenue—typically anywhere from 1 to 8% of gross sales—
and results in increased prices passed along to the public. Envision a scenario in
which a person set on illicitly acquiring some merchandise enters a store. A video
facial recognition system scans the person's face and processes the image to
compute a set of biometric markers. The set of markers are contributed to a
continuous stream that is scanned by a law enforcement application in turn linked to
a police record data base.

If a positive identification is made, meaning that the person has a record, an alert
will be generated to subscribers that a potential thief has been spotted in the store.
In the store itself, security personnel are then alerted as they subscribe to the law
enforcement monitoring system, and the store video system is instructed to provide
a stream of data relating to the thief's whereabouts in the store. The detection of an
actual theft may be performed by humans, although technology is currently being
developed to detect gestures that might connote the action of theft and thus trigger
a theft alert automatically2. The identification and location of the thief in the store
are then sent to law enforcement along with geo-spatial information locating the
store. These events are combined with real time locations of available police
resources. The closest police team is alerted to respond to the theft. This scenario
could be developed using a range of different technologies, some involving event
processing, others independent of it.

3.2 Synergies and relations of event processing and
analytics
In this section, we position event processing alongside analytics to provide guidance
and a possible direction for opportunities that emerge when these disciplines are
combined. Researching and developing one of the two fields with the other
technology in mind will help expand the potential of such opportunities.

1 http://retail.about.com/od/glossary/g/shrinkage.htm
2 See for example http://en.wikipedia.org/wiki/Gesture_recognition and references
therein.

 32

When we refer to analytics, we foremost relate to predictive analytics in which data
mining and machine learning techniques are used to sift through data for finding
useful patterns and discovering new insights. The resulting models can be deployed
to leverage these insights and make predictions. Common types of predictive models
include classification models such as regressions, decision trees and neural nets,
clustering models, and association models.

We also refer to statistical information of the execution of a system, such as
measuring key performance indicators (KPIs) and business intelligence.

3.2.1 Learn and discover event processing patterns with
predictive analytics
Discovering EP patterns with predictive analytics is a design-time, offline interaction
in which sifting through application data can reveal insightful patterns for event
processing. These patterns may benefit the system that includes event processing.
Since event processing patterns are usually specified by humans, in some cases,
important patterns may be overlooked or current patterns may not reach their
potential (in avoiding risks or capitalizing on opportunities).

The purpose of predictive analysis is to discover and learn new patterns that can be
deployed to the event processing system or engine.

In our theft example, learning and discovery tools could be used to correlate loss
events with other activities in the store, such as a shift change or an especially busy
time. This discovery could be used to improve theft detection. As seen in figure 3.1,
the data that predictive analytics is applied to may or should include data on raw
(incoming) events, events produced by event processing (derived events), and
scoring model results. The models produced may turn out to be event processing
rules or patterns.

Figure 3.1 illustrates the interactions between event processing and business
analytics.

 33

Figure 3.1: Event processing and predictive analytics interactions

 34

3.2.2 Implementing and executing predictive models with
event processing
The result of techniques that learn and discover patterns provide predictive models,
but these models are often not directly deployed and executed. Sometimes these
models are converted to procedural code or to SQL queries running directly on the
data. At other times, the models are run offline, completely off the operational
process that handles the data on which the models are to predict. Event processing
may be used to execute some parts of predictive models inline with the operational
process. Event processing could be used to collect, aggregate, and correlate events
to provide the more informative information required to execute some predictive
models. This is sometimes referred to as calculating the features' values for
executing a model.

In our loss prevention example, predictive models might be integrated into police
dispatch management. Crime predictions would be integrated with geospatial
information to direct police resources to the best locations based on historical crime
profiles and current events.

3.2.3 Incorporate predictive models in event processing
In some cases predictive models do get deployed to and executed by an engine. In
these scenarios, an event processing engine/system may call upon services of that
predictive model engine, such as a scoring service, and establish more sophisticated
pattern detections and actions. The P-ToPSS approach [Muthusamy 2010] is one
example of an event processing approach that predicts future event matches based
on observed event histories and on partial event matches.

A scoring service analytic model might be used to measure the likelihood that a
series of activities by a patron represent a potential theft event. If the score crosses
a certain threshold, the patron could be confronted by staff to reduce the potential
for a loss event.

3.3 Synergies and relations of event processing and
active rules (ECA)
A strong connection exists between the event-condition-action (ECA) paradigm and
event processing (EP).

ECA has its origins in active databases. The idea is as follows: If an event occurs that
satisfies a condition, then an action takes place. Events, conditions, and actions can
be more or less elaborate, depending on the system. Many systems rely on this
paradigm. We can cite HiPAC [Dayal 1996] among the pioneers of this paradigm.

 35

EP applies the three basic ECA concepts. The basic concept behind an event is the
same, as are the ones behind conditions and actions. However, EP goes beyond ECA
in the sense that it considers more complex events, conditions, and actions. This
implies that ECA is included in EP, as illustrated in Figure 3.2.

To illustrate that ECA is fully included in EP,

we must consider a case of events that is probably the most representative. In ECA,
events were considered as simple events, in the manner that new entries in a
database are typically handled. In EP, the event part tends to be more sophisticated.
For instance, it may consider many events in complex expressions (e.g., in a
temporal conjunction). Other extensions came over time—for instance, the inclusion
of events from external sources. The fact that events are more complex leads to an
E*CA paradigm. E* can then be a pattern of events, leading to the Pattern-
Condition-Action (PCA) concept, which recently became a common term in the event
literature.

In our loss prevention example, ECA rules are sufficient for some processing, such as
alerting law enforcement when a theft occurs. Yet ECA rules are insufficient for more
complex conditions and actions, such as identifying the best available police
resource.

3.4 Synergies and relations of event processing and
publish-subscribe approach
The publish-subscribe approach is concerned with the communication
(dissemination) of events. The approach [Eugster 2003, Fabret 2001] is emerging as
an appropriate communication paradigm for large-scale systems. It allows loose
coupling between mutually anonymous components and supports many-to-many
communication. In the publish/subscribe paradigm, a principal takes the role of a
publisher and/or a subscriber. Principals connect to the publish/subscribe middleware
in order to communicate. Publishers advertise the events they are prepared to
publish. Subscribers register their interest in receiving events through a subscription
that the middleware handles. Publishers produce events without any dependence on
subscribers.

Figure 3.2. Relation between event processing and business rules (ECA)

 36

This process occurs through an event broker, which routes—typically in cooperation
with other brokers—events from publishers to subscribers. An event is delivered to a
subscriber if it matches a subscription. This process is termed notification [Eugster
2003, Fabret 2001].

Publish-subscribe systems are available as type/topic or content/attribute-based.
Topic-based publish-subscribe systems involve the association of an event channel
with a particular named topic/type. Producers publish events to the appropriate
channel, while subscribers express their interest in receiving messages of a certain
type. Content-based publish-subscribe systems consider message content—a
subscriber defines his interest in receiving particular events based on the type and
attribute values of the event.

3.4.1 Integrating publish-subscribe with event processing
The publish-subscribe approach is defined in terms of communicating individual
events that are published and match subscriptions. The detection of patterns
involving a number of different event types, also known as complex event
processing, is typically built as one or more services above the dissemination
network or is directly integrated into the publish-subscribe substrate as in the
PADRES system [Fidler 2005, Li 2008, and Jacobsen 2009].

These services use publish-subscribe middleware. At the lowest level, they may
subscribe to what is referred to as primitive events, such as sensor readings, and
having detected a defined pattern, publish a higher-level composite event. In
general, an event processing service may subscribe to a combination of primitive and
composite events. The EP services may be deployed to distribute sub-trees of a
required pattern throughout a network to minimize communication overhead. An
exception to the layered model just described is the PADRES system [Jacobsen
2009], in which event processing is integrated within the broker network.

In our theft example, a publish-subscribe system might be used by the police
department to distribute alerts about criminal activity, or by merchants to distribute
reports amongst their peers. Without a publish-subscribe system, creating an event
processing system that crosses administrative and organizational boundaries would
be difficult.

Figure 3.3. Relation between event processing and the publish-subscribe approach

 37

3.5 Synergies and relations of event processing and
business process management (BPM)
Business process management is a broad field that covers several areas, including
the capturing, analysis, and design of business processes (such as the order-to-cash
process). The result of these activities is often referred to as a business process
model or business process type. Business process management also incorporates the
automatic execution of processes according to these business process models,
resulting in business process instances (e.g., fulfillment of a specific order). Process
steps, as defined in the process model, can either be automated activities (e.g.,
calling an appropriate service) or human tasks. The steps are scheduled according to
a definition of the work flow in the business process model. Finally, business process
management also comprises the monitoring of business process instances, the
capturing and analyzing process and step duration, and the waiting times, etc. From
these monitoring activities, often referred to as business activity monitoring (BAM),
bottlenecks and optimization potential can be identified.

3.5.1 Implementing BPM with event processing
Business process management can benefit from event processing in several areas.
First, event processing can be used to implement the execution of business process
instances [Li 2010, Muthusamy 2009]. Each step can be seen as a separate unit of
execution that when finished emits an event that is then captured by an event
processing engine. This in turn starts the next activity, based on the business
process models. Business process models typically include rules to determine the
sequence of steps that have to be evaluated by the event processing engine
(complex event processing) used to determine which step is to be executed next
(orchestration, choreography). Analogously, business processes can be
hierarchically-layered, i.e., a process execution triggers the execution of a
subordinate process.

3.5.2 Monitoring processes with event processing
Process execution monitoring is another area in which event processing is beneficial.
Events can occur on the meta level (in which step x has been started) or on the data
level (e.g., order received for part 124). Complex event processing is used to identify
trends (e.g., execution time is growing in the afternoon) and critical situations and to
throw alarms (e.g., critical order not processed within 24 hours), etc. The results can
be used for real-time reporting and dashboards. The time awareness and correlation
capabilities of complex event processing add functionality and flexibility to BAM.

3.5.3 Influencing business processes with event processing
In a more advanced scenario, the execution of business process instances can be
influenced by event processing beyond the definitions in the process model. For
example, event processing can initiate the execution of an additional activity steps in
a process (e.g., due to recently detected fraud activities, all currently processed
orders exceeding $100 must be reviewed by a manager). In addition, business
process instances could be initiated by event processing (e.g., order material
because events indicated upcoming stock shortage) or even stopped (e.g., cancel all
orders from a fraudulent customer). In cases like these, complex event processing
allows for flexible and timely reactions in threat or opportunity situations.

In summary, business process management can benefit from event processing,
because event processing allows for continuous timely reactions and responsiveness.

 38

Event processing adds agility, flexibility, and adaptivity to BPM, by opening up the
back box of a business process. Moreover, the loose coupling that is implicit in event
processing enables adding these feature in a non-intrusive manner.

3.6 Synergies and relationships of event processing
and data streams
This section discusses the relationship between the notion of event processing and
the notion of streams, an issue that is a source of frequent confusion.

3.6.1 Brief overview of streams
A data stream management system (also called a streaming system) is a platform
for developing and deploying streaming applications that run continuous queries
(CQs) over incoming streams. A stream is a potentially unbounded sequence of
events (also called tuples), usually arranged in some order. Streaming systems
typically consider an event to be a notification that contains a payload with a well-
defined schema similar to table schemas in traditional databases. In some streaming
systems, events also have a control field, providing metadata, such as temporal or
sequencing information. Streaming systems are typically characterized by their well-
defined query semantics [Barga 2007, Soule 2010] and sometimes have a
declarative language [Jain 2008, LINQ]. At the execution level, queries in streaming
systems consist typically of a directed graph of operators (similar to relational
operators in database systems) that process events using a dataflow-style event
processing paradigm. Common operators include selection, projection, join,
aggregation, and grouping. A data stream is just one type of stream, and the term
stream has wider coverage that includes video streams and voice streams, etc.

Figure 3.4. Relation between event processing and business process
management (BPM)

 39

3.6.2 Relationship of Streams to Event Processing
The fields of stream and event processing are contemporaries, and converge in their
definitions. Hence, the differences between the fields are blurry, and our
observations below are merely general trends, with exceptions in many cases. We
stress that the differences are less important than the similarities, which include the
ability to efficiently process long-running continuous queries over sequences of
events.

Complex pattern matching is generally not central to streams. Stream queries tend
to be compositions of database-style operators (e.g., joins) and user-defined
operators. These queries mostly represent functionality of aggregation and
transformation.

Streams tend to place a higher emphasis on high data volumes with relatively fewer
queries. On the other hand, event processing tends to consider the effect of sharing
across many queries or many patterns as a central problem.

Video stream processing, as well as audio or multimedia stream processing, are
typically not considered as scenarios for event processing, even though they are
examples of a kind of stream processing.

Streaming systems, having originated mainly from the database community, tend to
have a schema that is compatible with relational database schemata, whereas event
processing systems support a larger variety of schema types.

In our loss prevention example, stream processing might be used to manage large
volumes of data from a sensor network in a retail store, while event processing is
more appropriate for the parts of the application that must generate responses.

Figure 3.4 Relationship between event processing and streams

 40

3.7 Event processing and business rules management
systems (BRMS)
Due to the fact that some of the event processing models are using the term rules,
event processing is sometimes confused with business rules; however, these
technologies are complementary, with little overhead.

The main differences between the two approaches are as follows:

Event processing functions are activated as a direct or indirect result of event
occurrence; business rules are activated on request.
Event processing functionality (as addressed in Chapter 2) typically includes filtering,
transformation, aggregation and pattern detection in various forms. This overlaps
with business rules, which may also do filtering and transformation, but these
functions are typically stateless and do not perform aggregations or pattern
detection.
Event processing has a strong relationship to temporal capabilities, i.e., temporal
contexts like various types of time windows and temporal patterns. Business rules
typically do not support temporal aspects.
Synergies between these technologies are typically in the form of business rules
serving to make action decisions in the consumer side of event processing or
business rules publishing events as part of their processing. The relationship is
illustrated in Figure 3.5. Notably, extending event processing to include business
rules is possible, and vice versa.

3.8 Summary

This chapter summarized the relationship between event processing and other
technologies. A specific application often has parts that fit event processing and
other parts that are better suited to other technologies. Thus, achieving easy support
of hybrid applications is an important challenge for the event processing area.

Figure 3.5 Relationship between business rules and event processing

 41

Chapter 4: Event processing related
standards
Standards are used throughout business and IT for many reasons, including
achieving a common understanding, enabling good communication, and promoting
an easier interchange across organizations and tools.

Such achievements in turn lead to reduced training, a higher-quality and safer
productivity, reduced costs, and increased customer confidence.

In event processing, many areas of software development reuse existing
technologies and methodologies, allowing their relevant standards to be used as
well. New standards may need to be developed to replace or augment existing
standards.

4.1 The EP standards reference model
To understand the positioning of existing and required standards in event processing,
we must understand the multiple viewpoints and business and technology areas to
which standards may be applied. An EP standards reference model (ESRM) can be
used to assist with this understanding. The model in Figure 4.1 uses the OMG model-
driven architecture (MDA) viewpoint to describe standardization areas.

4.1.1 Business and technical perspectives
The ESRM describes a set of components influencing the development,
implementation, and deployment of EP applications, whereas EP refers to general
event processing. The model extends the MDA, in which a sequence of models are
defined from a business or computer independent model (CIM), and then
progressively detailed or transformed with IT perspectives, first to the platform
independent model (PIM) and then to the platform specific model (PSM). These
models explicitly distinguish between the business and the technical perspectives.

On the one hand, the aim of the business perspective is to define the domain
terminology independent of any specific technology in a specification sheet. This
provides business users and managers or decision makers, and for IT systems, the
developers, with a common understanding regarding the general definitions of a
system from which requirements can be abstracted. These models are often
augmented by business use cases. The abstraction from business model to IT system
requires answers to questions such as: What functionality must be realized? What
limitations must be considered? What best practices should be considered?

 42

On the other hand, the technical perspective aims to describe, in increasing detail,
the implementation techniques and technologies for developing some automated
aspect of the business perspective. The target groups here are the software
architects, designers, and developers. The main questions here are: What
technologies have to be used? What technical guidelines and patterns should be
considered? What technical conditions have to be considered?

4.1.2 Domain-specific and general standards
The ESRM also illustrates that both domain standards and general standards support
EP.

Domain standards are specific to a business domain, e.g., to banking, retail, or
logistics. Many domains have their own specifications and regulations that are
adopted for IT implementations and also are relevant in EP applications. For
example, a domain standard called ACORD Framework provides an XML model of the
concepts used in insurance underwriting activities and is applied to certain classes of
insurance. This standard can be adopted in EP as a data model or extended to
provide an event model in EP systems.

General standards consist of domain-independent standards, e.g., common adapted
design guidelines and patterns in the field of software development. The UML
standard, for example, provides a framework of modeling components, such as class
diagrams and state models that are relevant to EP systems.

B

A

Figure 4.1 EP standards reference model—ESRM

 43

4.2 Standards per the ESRM classification
The following sections provide a short introduction to the CSRM component
standards that influence EP applications.

4.2.1 Common standards and laws
Common standards and laws provide conditions and regulations that have to be
considered in business, such as laws for stock trading. Development of a software
application must follow these laws.

4.2.2 Domain reference model
Domain reference models provide a subset of best practices, reference business
processes, etc., for a specific business domain. These models help adaptors in
defining a suitable application, based on well-proven best practices, such as a well-
proven reference business process for the manufacturing domain.

4.2.3 Domain use case
The use case describes how a problem can be solved, e.g., how to detect fraud in
stock trading. Use cases are often derived from the business strategy and the
reference model.

4.2.4 Strategy
The strategy defines the individual business strategy that has to be considered in
developing new applications for a company. The strategy consists of business
(business motivations, goals, policies, and rules) as well of technical (applications
infrastructure and allowed frameworks) conditions.

4.2.5 Functional model
The functional model provides domain-independent best practices and guidelines
helping to design and develop a proper application, e.g., “Design Patterns—Elements
of Reusable Object-Oriented Software”.

4.2.6 Computer-independent model
The computer-independent model (CIM) describes a business functionality or system
without reference to IT specifics. CIM should provide a common understanding
between business users and software developers. In the EP model, CIM consists of
following components:

Standard vocabulary or ontology: The ontology provides a set of definitions and
terms enabling a common understanding for all stakeholders. Much like a glossary,
the aim of an ontology is that every participant has to use the same word for a
defined concept.
Process description: The process description details the activities and flows that
produce a specific product or service, enhanced with events occurring in it or
influencing it.
Reaction: The reaction is a definition of the activities that must be initiated, based on
previously made decisions.
Decision: The decision refers to a definition of rules, that is, what has to be done if a
relevant situation was detected by pattern matching.
Patterns: Patterns refer to the definition of event patterns for detection of relevant
situations that represent knowledge from source events, e.g., for fraud detection.

 44

Event schema: This refers to the definition of attributes and types consisting of a
simple event, e.g., the event “Stock Price” comprises several fields, such as security
identification code and amount, etc.

4.3 Platform independent model standards (PIM)
The platform independent model layer represents behavior, data, design, and
messaging, independent from a particular EP platform. These PIM abstractions
support increased portability and platform independence and cross-platform
interoperability and interchange between domain boundaries, as described below.

Event-driven behavior: Effects of events lead to some (state) changes in the
properties of the world, which can be abstracted into situations. Decisions represent
the choices a system can make in certain situations. Actions might be triggered or
performed as reactions, based on the decisions and changes in states or situations as
an effect of events.
Event Data: Platform-independent representation of events and their data is crucial
for the interoperation between EP tools and domain boundaries. This interoperation
can refer to any of the following:

1. Interoperation among different EP products to exploit benefits, e.g. stream +
rule processing component

2. Interchange of events in a distributed heterogeneous EPN
3. Interchange of events over domain boundaries, e.g., cross-organizational

processes
Event processing design: Platform-independent (reference) architecture and design
models addressing different views for different stakeholders can achieve the
following:

1. Furnishing abstractions and reference generalizations to manage technical
complexity

2. Providing structure for solving design problems
3. Experimenting to explore multiple solutions, including best practice solutions

such as design patterns, reference architecture descriptions that model the
abstract architectural design elements, and architectural reference models
that describe the important concepts and relationships in the design space

Messaging: PIM messaging addresses transport protocols and routing as well as
coordination/negotiation mechanisms.

 45

4.4 Standards in ESRM areas:
Table 4.1 describes the standards in the ESRM areas.

Area Available

Standards
Benefits Gap Action

common
standards,
laws

several laws (often
country specific), e.g.,
BörsG for stock trading
in Germany

no benefit for EP none none, because not
EP-specific

domain
reference
model

various per domain for
data

efficient design and
development of EP
applications for
specific domains

rarely handles
events, just data

extends to common
events as required

domain use
case

covered by
- UML use case
- EPTS use case
template

creates common
understanding
between business
user and software
developer

misses event
aspect

improves use case
templates

strategy Usually a textual
description; partial
coverage in
- OMG BMM

clarifies business
strategy

may need more
emphasis on
events

none, because not
EP-specific

functional
model

- EPTS Fn Ref
Architecture
- many different ones in
the field of software
development

helps implementing
a proper application

specific
functional
patterns for EP
not available

creates and
improves functional
models for EP

standard
vocabulary,
ontology

- text based glossary
- KR ontologies (e.g. in
OWL)
- OMG SBVR

common
understanding for
all stakeholders
involved

time ontology.
little emphasis
on events in
such
vocabularies.

none, because not
EP-specific

process
description

- BPMN
- EPC

creates a common
understanding
between business
user and software
developer on a “big
picture”

insufficient detail
on events for EP
applications

extends BPMN with
sufficient support for
modeling simple and
complex events

reaction can be an event update
through to a service
definition

common
understanding for
all stakeholders
involved

none none, text-based
description is
sufficient

decision none but
- decision table, tree,
etc (OMG DMN
proposed)

common
understanding for
all stakeholders
involved

none none, because not
EP-specific

event
patterns and
other event
building
blocks

none, but
- OMG EMP proposed

better
understanding of
relationship
between involved
events and roles

no structured
way to describe
EP building
blocks, such as:
patterns,
aggregations,
transformations,
etc.

new standard
required

event
schema

- UML
- design language used
in NEAR [Ammon 2009]

creates a common
understanding
across business
users/event sources
and developers

not sufficient for
needs of event
processing

improve modeling
languages,
e.g., NEAR [Ammon
2009]

 46

Area Available
Standards

Benefits Gap Action

event-driven
behavior

- W3C RIF (and RuleML)
- OMG PRR
- OMG UML behavioral
view diagrams
- OMG BPEL, W3C WS
choreography
[OMG EDA]

declarative, explicit
representation of
behavioral/reactive
logic,
publication, and
interchange of
decisions and
reactive behavior

standards for
specific
domains: rule-
based event
processing
languages
(RuleML), Web
service
execution (BPEL,
WS-C,…); SQL
extensions
[OMG EDA]

- rules: further
standardization in
W3C RIF [RuleML]
- standards for other
domains needed,
e.g. stream
processing (SQL
extensions) [Jain
2009]
- interoperation,
e.g., rule standards
with BPEL

event data - software engineering:
UML structural view
diagrams
- knowledge
representation: many
event ontologies exist
(e.g. in OWL
- rules: W3C
RIF/RuleML
- OASIS WS
notification, W3C WS
eventing, OASIS WS
Topics
- OMG event meta
model
- OASIS common base
event

- declarative
representation,
translation and
interchange of
events
- interoperation
between different
platform specific
tools and domain
boundaries
(requires
semantics)

standards for
specific
domains: rule-
based event
processing
languages
(RuleML), Web
Service Events
(WS X),
enterprise
applications
(OASIS CBE)

- rules: further
standardization in
W3CRIF/RuleML
- standards for other
domains needed,
e.g., stream
processing
- interoperation,
e.g., rule standards
with other event
standards/ontologies

event
processing
design

- UML 2 implementation
view diagrams
- ISO/IEC 42010:2007
recommended practice
for architectural
description of software-
intensive systems
- agents: OMG agent
metamodel; FIPA agent
model; …
- workflow
management coalition
reference model

- abstraction from
the PSM design
increases
understandability
and reusability
- agent model is an
abstraction from
technical IT
components to role-
based agents on a
more abstract level

current
standards are
not specialized
for event
processing
design

reuse and extend
existing standards
for event processing
design descriptions

messaging - many transport
protocols: JMS, JDBC,
TCP, UDP, multicast,
http, servlet, SMTP,
POP3, file, XMPP
- message routing
patterns
- coordination and
negotiation
mechanisms/patterns
[OMG EDA]

platform-
independent
messaging

none–existing
standards can
be reused for
transporting and
messaging
events

None

Table 4.1 ESRM-related standards

 47

4.5 Next steps (action items)
We propose the following action items for the EP community in the area of EP-related
standards:

Create a set of DSRMs (with potential use cases, events, complex events, etc.) to
enable visibility in companies and show the potential of event focus and EP as well as
providing guidance on the implementation of EP applications
Create computational-independent common notations for modeling EP specific things
(e.g., syntactic and semantic extension of UML class diagram for modeling event
patterns and other event processing building blocks and their semantics (event
ontology), mappings into other representation formats (e.g. W3C OWL event
ontologies), and extension of BPMN with EP, etc.)
Extend or introduce platform-independent technical standards to increase
interoperability and reduce implementation effort when using EP in applications.
Standards efforts for rule-based event processing languages already exist (such as
the RuleML effort) and will be further standardized (as in W3C RIF and OMG PRR
extensions). For other domains, such as event stream processing and event querying
(e.g. SQL extensions), some initial standardization efforts were attempted, but a
standard has yet to emerge [Jain 2009]. Another interesting issue to address is the
mapping between domain standards, e.g., between rule-based event processing and
event stream processing, that will enable the hybrid interoperation among different
event processing technologies.
Document existing relevant standards per the EP standards reference model for
guidance and consideration. (See the EPTS Wiki for more information.)

 48

Chapter 5: Grand challenge:
The global event processing fabric and its
applications
	

This section identifies a grand challenge that serves as a common goal and
mechanism for coordinating research across the spectrum of people working on
event processing.

Event processing has many challenges, many of which are grand; however, our goal
here is limited: identify a single, though broad challenge that impacts society. The
challenge should provide a basis for measuring progress of the EP community. The
grand challenge should be revisited in regular sessions at annual meetings, such as
at the DEBS conferences, to review progress and discuss approaches to the
challenge.

The event processing grand challenge (EPGC) comprises two parts:

A decentralized, global, Internet-like infrastructure, which we call
the Event Processing Fabric, built upon widely-accepted open standards
The design, development, deployment, and management of life-changing, or society-
changing applications that utilize the Event Processing Fabric
This challenge is grand in the sense that its realization requires new cutting-edge
R&D results and that it will influence society in a transformational way—meaning
going from being a society that merely reacts to problems, to a society that
proactively exploits opportunities and guards against threats.

In the following sections, we describe the Event Processing Fabric part of the grand
challenge and provide the basic building blocks for its efficient realization. We then
list life- or society-changing applications that could utilize this fabric. Finally, we
present some related work and give concluding remarks.

5.1 The Event Processing Fabric grand challenge
The most important part of the EPGC is to create an infrastructure, built upon
widely-accepted open standards that enable different components of the event
processing architecture to be plugged into an event processing "fabric” with minimal
effort. The Internet grew rapidly because plugging into the network following IP
protocols was easy.

Our challenge is to develop an Event Processing Fabric into which components
can be easily plugged and unplugged, allowing for the development of time-driven or
event-based global applications. We are considering the run-time dynamics of the
whole architecture—not only should components be dynamically pluggable, but
complex event patterns and their subscriptions should also be defined and
discovered dynamically as well as be composable.

This “on-the-fly-adaptive” nature of the Fabric will enable the dynamic definition of
the situations of interest (complex event patterns) and ad hoc generation of timely
reactions to new situations. The key challenge is continual global situational
awareness, realized in a decentralized fashion. This will enable going beyond the
(early) recognition of problems toward the (proactive) discovery of opportunities and
threats.

 49

A service that senses activity related to interests and then responds appropriately is
just one example that illustrates the adaptive nature to which we refer.

Suppose that you plan to buy an eco-friendly car. A service could create and
continually update a dynamic report relevant to that interest. This report could
include reviews of relevant cars, prices, locations of sales, identities of friends who
have bought such cars recently, and locations of friends in the vicinity who own that
car. All of this is already doable; the challenge is to develop a fabric facilitates plug-
and-play, making doing it much easier.

The Event Processing Fabric will incorporate the precision and timely feedback of the
global positioning system (GPS); the distributed ownership and reach of the World
Wide Web (WWW) the community-based, self-curated, constantly-updated content of
Wikipedia; and the adaptive nature of complex adaptive systems. The Fabric will be
used to develop applications that range from systems as complex as
detecting incoming earthquakes to systems that simply warn of schedule changes in
daily commutes between work and home.

Technically, the challenge of building the Fabric consists of having thousands or
millions of different sources that collect sensor data from across the globe, and then
filtering, aggregating, transforming, and detecting patterns of interest in real-time
and historical information. In addition, the Fabric will need to manage the
subscriptions and locations of millions of users, in a secure and anonymous way,
across different geographic and administrative domains, sending alerts in a timely
fashion and utilizing the most appropriate channels of communication.

As in other domains, the infrastructure network used to build the Event Processing
Fabric will be open and will be used by private and public agents. For example,
manufacturing industries can use the Fabric to instrument production lines and issue
warnings as needed. Energy providers can instrument their energy grids to monitor
for safety levels and warn people and cut off systems when necessary. Airlines can
inform users of changed schedules; health organizations can monitor check-in types
and numbers, make predictions, and raise alarms of epidemics. Schools can alert
parents on local events. In short, the Event Processing Fabric is designed to be the
highway of global, real-time data, and the enabler of applications for a
proactive society.

5.2 Event Processing Fabric implementation issues
In the following sections, we identify some of the implementation issues and quality
attributes related to creating the Event Processing Fabric. Our Event Processing
Technical Society (EPTS), with its roots on databases, rule-engines, publish-
subscribe systems, distributed systems, and other systems, is especially positioned
to overcome these challenges and make this vision a reality.

5.2.1 The Fabric
The Event Processing Fabric should help develop many (but not all) event processing
applications. For example, the Fabric may be inappropriate for highly secure
applications such as military or homeland security. Likewise, the Fabric may be
unsuitable for high-performance applications such as real-time stock trading. Similar
to the Internet, the Fabric will be extremely useful, but not the only way to connect
components.

A critical challenge in developing a plug-and-play Fabric is agreeing to a single or a
couple of model architectures for event processing. Assuming that the EPTS
architecture group has determined the architecture(s) of choice, the event

 50

processing community now has to develop standards for data modeling and
schemata for communication. For example, the community may have to agree on
how components register themselves with the system, and how the system monitors
the health of its event processing network.

The event processing community can also exploit web services standards for
communication and managing the network. Agreeing on a single standard is perhaps
too much to hope for, but we can build upon the most popular ones, to the same
extent that the Web services community has agreed on two or three standards.

5.2.2 Quality attributes
The Event Processing Fabric must provide quality attributes reliability-based on
service level agreements (SLAs), ensuring the agreed quality of services in the
following areas.

Privacy: ensuring the confidentiality of published information
Security: Protection from hackers that attack the fabric
Openness (Interoperability): plug-and-play standards are necessary for the fabric to
be a fabric
Provenance: tracing back a chain of events should always be possible
Elastic performance: accommodating variable requirements, possible using so called
“cloud” services (requirements for extreme-scale disasters vary dramatically over
time and the requirements are likely heaviest when disasters occur)
Energy-efficiency: minimizing the energy consumption of the devices connected to it
The following attributes should be discussed:

Autonomic computing support: the Fabric must be able to self-tune itself
Intuitive User Interfaces: research needs to be done to ensure that the broad public
can tailor the fabric for their own needs
Quality of the complex event pattern bases: ensuring the validity of the situations of
interests
Non-repudiation: identifying who produced what should always be possible
Authentication: some services should force consumers or producers to identify
themselves
Anonymity: and at the same time, others services might allow anonymous users
Availability: the systems should be available at all times, even in the presence of
network partitions; eventual consistency is preferable to always consistency as a
tradeoff for obtaining higher availability
Quality-of-Service: the fabric should allow differentiated quality-of-service levels or
priorities for different service agreements.

5.2.3 Business and societal adaptation
An essential part of the application development is the definition of the revenue
models on which the applications are operating, assuming that these applications will
generate added (business and societal) value for all stakeholders. The development
of the mechanisms for involving event producers in the model, e.g., what would
motivate them to make their events available for others, is especially challenging.
Similarly, event consumers must be ready to accept a selected pricing model.

Further, pattern engineering must be applied to support for the creation and
maintenance of complex event patterns and must be provided in a user-friendly way.

These concepts should be built independently from the technical realization of the
Fabric.

 51

5.3 Applications utilizing the Event Processing Fabric
The second part of the Event Processing Grand Challenge is to demonstrate the use
of the Event Processing Fabric for different kinds of interrelated applications, such as
the following:

Extreme-scale disasters: This use of the Fabric would help society respond to
situations such as hurricanes, earthquakes, and terrorist attacks. Data sources
include sensors managed by government agencies (e.g., meteorological services
tracking storms), companies (e.g., companies that monitor congestion in roads), and
individuals (e.g., web sites that contain images or videos of situations such as forest
fires and buildings after quakes).
Critical societal applications: This refers to managing systems such as the smart
electric grid, the smart city, and home healthcare for the aged. These systems are
becoming increasingly event-driven. For example, as the electric grid grows, it relies
on green sources of energy, such as wind and solar power, which are less
dependable that other energy sources; thus predicting, detecting, and responding to
events, such as cloud cover over solar arrays or sudden drops in wind speed,
becomes critical.
Personal applications: This refers to determining the optimum commute using buses,
trains, or taxis, based on sensing resources' locations, availability, and on planning
the best routes.
Social “eventing”: This is the next step in the evolution of social networking. Data
sources in social networks, such as Twitter and Facebook, are proliferating. Many
organizations are working on mining this data. The challenge is to use the Event
Processing Fabric to complete the loop from data acquisition to information fusion,
planning, and responding, so as to allow members of a social networks to monitor
their friends in the network and to easily respond to their actions.

5.4 Elements of the challenge
The EPGC exercises most of the components of the event processing architecture
(see the EPTS group on reference architectures or books on event processing). These
components include:

Data acquisition components such as sensors or software agents that poll Web sites
and human beings
Event processing agents that integrate data from multiple sources over time to
estimate the states of the world relevant to the given application (These components
may estimate the probabilities of different future trajectories of the state of the world
and plan sequences of actions to deal these outcomes. The agents will be able to
reason about the world using available domain knowledge; the event processing
agents will include an extended functionality to support proactive behavior such as
prediction and decision agents.)
Responders or actuators that execute actions
Communication networks for transmitting information between components (These
networks may be implemented using publish-subscribe protocols)
Management components used to specify, monitor, and control the entire system
(They enable design- and run-time configurability of the system and include self*
functionalities such as self-evolving nature.)

5.5 Related work
Currently, the system most closely related to what we have been describing as the
Event Processing Fabric is pachube.com. Pachube is a site to “store, share & discover

 52

real-time sensor, energy and environment data from objects, devices & buildings
around the world." Pachube is a convenient, secure, and scalable platform that helps
you connect to and build the "internet of things".3 However, Pachube does not
support the requirements described in Section 5.1, nor the availability, partition
tolerance event-driven architecture we would expect from a wider-encompassing
Fabric.

Different communities at different times have proposed grand challenges, and some
of these earlier proposals have many points of similarity with the challenges
identified at Dagstuhl. The grand challenges identified by the database community4,
EPTS at Trento, the CANOE workshop, and elsewhere, are particularly relevant in
identifying the reasons for selecting grand challenges, and for some of the challenges
we have proposed. The event processing community plans to collaborate with other
groups on grand challenge problems that share similar features.

5.6. Summary
We see this grand challenge as the vision for developing the event processing
community in the next decade. The challenge will help to synchronize efforts at
different parts of the community. Indeed, the research community will learn what
the breakthrough applications are; analysts will learn how these applications will
transform business and society; vendors will learn what the unique selling points of
the event-driven solutions are; and customers will learn what else they can expect
from the technology.

The EPTS community will plant the seeds for this work, while the challenge will be
used for measuring progress in the community itself. Extracting a set of small-sized
challenges out of the big one also has potential to challenge the community to realize
goals in a shorter time frame (e.g., in the form of Demo challenge at the DEBS
conference).

3 http://www.pachube.com/
4 The Lowell Self-Assessment Report,” CACM, Vol. 48, #5, May 2005,

 53

Chapter 6: Near-term research
While the identified grand challenges for event processing offer clear directions for
longer-term needs, we can also state a number of more near-term goals. These are
based on the gap between present needs and the identified common functionalities
that are at our disposal for EP.

This chapter outlines research directions that have been recognized as necessary to
fulfill the present requirements posed to EP systems. Some of the outlined directions
may have already undergone initial investigations yielding preliminary results or may
already be subject to vigorous research. Others may still be on the wish-list.

We coarsely regroup the research tasks that constitute our proposed research
agenda into four themes.

• Event semantics include issues of identifying and extending the meaning
of events, reconciling the view of real-life events and that of programming
artifacts.

• Events and actions make up an overarching theme motivated by the
observation that the boundaries of EP can be extended to cover many
more present and future application needs by abandoning the early limited
view of EP applications. The event driven architecture consists of three
largely orthogonal tiers for event production, event processing, and event
consumption. For instance, considering actions triggered in response to
events to be integral parts of an EP application opens many new avenues.

• Systems' efforts are not bluntly geared at squeezing out the next few % in
performance, but rather aim at more far-reaching improvements in
performance that consider reliability and consistency guarantees offered
to EP applications.

• With the scale and reach of EP applications increasing, privacy and
security become prime concerns, as for any distributed applications.
However, EP poses its own specific challenges in this area.

6.1 Event semantics
What are events? What do they represent? What are their types, their attributes?
What can be done with them? The goal of this first axis of research is less to
reconcile all existing models of events, but more to further the semantics of events
along different lines. The primary goal is to extend expressivity of EP systems to
accommodate new applications and more efficiently support existing ones.

6.1.1 Probabilistic events
In most contexts, a fine but clear distinction exists between actual events,
reifications, and notifications of such events subsequent to observation. Since any
observation can be perturbed, we can view notifications as describing events having
occurred in the captured form with a given level of certainty, or with their associated
data with a given confidence. Uncertainty of data is an area that has been widely
explored in the context of databases. As event reifications are usually associated
with data, this data would naturally seem to come with a degree of certainty or
confidence as well. Such degrees can also be associated with predictions of future
events, which will be addressed. At the same time, we can often associate levels of
relevance with events that may or may not be correlated with their confidence levels.
We refer to such models, which assign non-binary weights to events, as supporting
probabilistic events. This is the case whether the weight metrics are continuous or

 54

discrete or actually represent a probability. We foresee that the handling of such
events and the reasoning about corresponding event combinations can benefit
strongly from probability theory and stochastics. Models of probabilistic EP, as well
as corresponding programming and system support, are necessary.

6.1.2 Provenance
Provenance is an important aspect of events that is related to the above and that has
been largely under-addressed so far. Provenance is related to probabilistic events in
that the origin of events is another relevant attribute that can influence their
handling and processing. We thus expect that research on this topic may benefit
from synergies with that of probabilistic events.

Provenance, however, also has other flavors, which can be exploited for audit and
blame assignment. The fundamental theory of events in concurrent and distributed
systems provides models for reasoning about event relations (e.g., causality), and
mechanisms for identifying instances of such relations (e.g., logical or vector clocks).
These models can benefit from research on support for data provenance, but
additional research is required in the event processing context. A system can hardly
track all event relations and store all events ever observed during application
execution to allow any event to carry its entire genealogy. In addition, tracking
actions that led to given events or that have been performed during the handling of
causally preceding events might also be desirable. Research is required in
programming models to allow applications to specify relevant subsets of event
genealogy that need to be captured, and system support is required to effectively
and efficiently obtain such traces.

6.1.3 Event context
Real-world events are most commonly associated with time and space dimensions,
mirroring the most common inquiries about such events, namely when and where.
However, event context can encompass more information and items than these two
well-known dimensions entail, as illustrated by the previously proposed lines of
research. Origin, genealogy, or weight can all be viewed as describing parts of the
context of an event. In addition, they illustrate the importance of the relative and
logical notions of when and where, as opposed to absolute, physical ones.

Typically, distributed systems may be devoid of synchronized clocks (motivating
logical time to reason about time) and applications might be more concerned (or at
least equally) with which software component or module created a given event
rather than the host on which it actually happened. One way to tackle event contexts
and also to support the above research directions could be to investigate all-
encompassing notions of an event context capable of modeling all existing event
context attributes. An alternate, perhaps better, approach is to undertake specific
research into versatile support for context. This could be tailored to different needs
for specific applications, infrastructures, individual components, or paths in
applications. As hinted to in the context of event relations, this may be necessary to
deal with the sheer complexity of context in EP applications. This approach will also
better accommodate new types of contexts such as actions leading to respective
events. This is further elaborated in the following sections.

6.2 Events and actions
Perhaps one of the most important near- to medium-term extensions of established
EP paradigms and systems we foresee is the consideration of a larger picture that

 55

extends beyond capturing events and event-handling activities (reactions) in
applications, and delegating these to dedicated EP systems. In the enlarged
perspective we envision broader consideration of actions—of which reactions are but
a special case. This allows us to fully close the loop encompassing event producers
and event consumers, thus providing a more holistic view of event-based
applications and broadening the scope of EP.

6.2.1 Complex actions
It is important to consider actions as part of an EP application, in addition to making
allowances for complex actions. Complex events paved the way for much more
expressive applications as opposed to single event processing scenarios. Similarly,
support is required for the expression and efficient handling of complex actions that
are triggered in response to complex events. In particular, complex actions—whether
or not reactions to lower-level events—can include the generation of events, closing
the loop between event producers and consumers. We foresee programming models
and abstractions exposing complex actions, so that static analyses can be devised to
statically verify properties such as the absence of deadlocks or the satisfiability of
timing constraints. To achieve completeness, these analyses may be complemented
by runtime monitoring techniques. Such dynamic analyses can also be employed to
optimize the scheduling of complex actions, based on the same time insights into
their semantics and boundaries.

6.2.2 Goal-directed reaction
Our goal is to move away from a simple three-tier view of separate entities—(a)
event producers, (b) EP system, and (c) event consumers—to a larger picture that
also provides opportunities for higher-level perspectives on EP-based applications.
Most importantly, a larger picture enables more declarative-style and goal-directed
specification of complex applications. This gives EP the nature of an implementation
technique rather than that of a programming paradigm. This approach includes
models defining higher-level goals based on rules, predicates, or invariants. We
foresee the use of automatic theorem in combination with the axiomatization of
corresponding EP programs to prove that high-level properties are ensured by lower-
level EP reaction strategies and implementations.

6.2.3 Compensation and retraction
In some cases there might be achieved by defining alternative reactions to complex
events; Furthermore, strategies identified as suitable at a given point during
execution may later reveal themselves to be sub-optimal or even erroneous. Often,
these strategies have already been pursued and corresponding actions triggered. In
such cases, compensation for the triggered actions might be necessary and the only
viable solution is to reestablish invariants or to realign the system state with higher-
level goals. Moreover, when actions have been triggered outside of the EP
application, these actions cannot simply be undone, but can only be made up for by
well-defined compensating actions. For the remaining execution, corresponding
reactions or execution paths might be identified as being unsuitable or may later be
re-installed as valid strategies.

Although the foundations of compensation have been explored in the context of more
traditional data-centered and transactional computation models, little effort has been
undertaken in combination with the more (inter-)action-centric abstraction of events.
Existing work on transactional events focuses on backward (roll-back) recovery
mechanisms, rather than forward recovery. Concerted advances at the programming

 56

model and system levels are necessary to support compensation. We believe that
this can lead to powerful programming models, possibly in combination with
advances on event context for tracking backward to causally preceding events and
actions.

6.2.4 Predictions and speculations
Predictions and speculations are two more advanced EP features that are of great
importance for present and near-future applications. The former concept can be
understood as consisting of using EP to predict future happenings based on past
events, in combination with stated expectations or with complex events observed in
the past. Predictions can be useful to prepare for actual actions whenever the
predictions should become true, or to immediately trigger preemptive measures.
Predictions can be combined with probabilistic events, as proposed in Section 6.1.1,
to associate predictions with confidence intervals. With actions being viewed as an
integral part of an EP application, and able to give rise to events, we can take
predictions a step further towards the latter notion of speculations. The integration of
an EP infrastructure with a simulation engine can allow the speculative execution of
specific reactions to predicted complex events. This can further extend the horizon of
prediction. If the effects of such speculative actions can be contained, they can
simply be undone in cases when an antecedent prediction is invalidated. Otherwise,
compensation can be useful in this context to counteract any speculative actions.
Also here, advances at the programming model as well as EP system level are
necessary to offer such functionality.

6.2.5 Adaptive event processing
The early rather static models of event processing consist of simple, obscure,
reactions for handling simple events. Once we abandon these to embrace a more
complete view of EP applications, we can easily conclude that (a) reactions to given
events or complex events cannot be assumed to stay the same forever, and that (b)
even the (complex) events that are of interest to an EP application or a given
component of such an application may vary throughout its lifetime. Achieving such
adaptive event processing will require advances on various fronts. Due to the rapid
growth of the market for EP applications, many quick and pragmatic solutions were
necessary to satisfy the needs of that time. In hindsight, such solutions too often
consisted of adapting or even simply adopting existing components designed for
related problems, many of which eventually became part of established best
practices in the field. Providing more dynamic and adaptive EP solutions will thus
require rethinking larger parts of the protocol stacks of EP systems. These efforts will
be driven by the creative tasks of identifying and envisioning which parts of EP
models must or can be replaced to allow for more adaptivity in EP applications and
how this can be done.

6.3 Event processing systems
As outlined in Chapter 2, EP applications are centered around an EP infrastructure,
which deals with routing, filtering, and composition of events based on event
processing agents (EPAs). Even considering only current EP system functionalities,
several advances are necessary and already conceivable on this front.

6.3.1 Function placement and optimization
A major key to the performance of EP applications consists of breaking down event
treatment into elementary operations, and placing them over a set of physical (e.g.,
computers and processors) and logical (e.g., processes and threads) entities capable

 57

of hosting EPAs. While a decent amount of effort has already been put into such
decentralization in the past, we see room for improvement in dynamic placement
strategies with proactive behavior, based on fluctuations in application load and load
distribution. Current models and systems react to spikes in activity, at best,.
Moreover, they consider event processing operations to be static and do not support
instance-adaptive or speculative event processing. Last, but not least, any further
additions to event semantics or work on the refinement of actions will yield new
challenges and new opportunities for dynamic placement strategies, including the
placement and scheduling of complex actions that are to be performed in addition to
EP.

6.3.2 Consistency
Literature is abundant on pragmatic load-shedding techniques to deal with spikes in
event production and in other activity from event-based applications. Despite early
work on more selective mechanisms for shedding load, we observe that little work
has been done on consistency and other properties, with respect to individual events
or especially with respect to complex events. Typically, current decentralized
approaches for event composition are pragmatic and primarily consider shortest-path
routing and similar metrics for ensuring low-latency when placing EPAs, often times
duplicating such EPAs. As a result, different EPAs may be seeing and combining the
same events, but in different orders and arrangements. As a net effect, two
consumers interested in the same complex events may perceive contradictory
outcomes, and thus trigger conflicting reactions. In particular, this makes replicating
event consumers difficult for high availability. The manual deployment of proxy
consumers, which multiplex complex events to replicated end consumers, and similar
pragmatic solutions may work in some special cases. But in general, these tend to
shift the problem rather than solve it. In addition, by integrating actions or using
compensation into the picture, extending consistency across those actions becomes
important. More research is required on models that capture the entire EP application
from the production of basic events to the highest-level reactions.

6.4 Privacy and security
In addition to traditional privacy and security concerns, event processing needs to
address specific challenges in i) providing access control for consumers and
producers of event streams, ii) ensuring the authenticity of events, and iii) providing
privacy for consumers as well as producers. The core challenges in event processing
systems arise once parts of the event processing infrastructure, such as EPA hosts,
cannot be trusted and become apparent with an increasing decentralization of event
processing systems.

6.4.1 Access control
Access control mechanisms in event processing need to be provided for producers
and consumers, respectively. For consumers, access control ensures that only
legitimate data sources and event processing nodes can produce events. Similarly,
consumers can only receive those events that have been authorized by the event
processing system. Existing work has already proposed solutions for organizing
content-based routing and keeping content confidential from unauthorized entities in
highly decentralized event processing systems. However, it is a major challenge for
access control mechanisms to provide fine-grained access restrictions with respect to
the event space of the event processing system and support access control that can
dynamically evolve over time. This requires appropriate and scalable key

 58

management to cope with the many possibilities that exist to query events.
Furthermore, the key management solutions need to cope with the revocation of
keys or limit their time of validity to ensure a dynamic evolution of access control.
For highly decentralized event processing solutions, key management yields the
main bottleneck. Traditional public/private key infrastructures, if applied in a naïve
way, will suffer from a large number of private/public key pairs for the key
management system.

6.4.2 Authenticity of events
Once events are mediated over untrusted hosts, it becomes important to ensure the
authenticity of these events. Consumers must be able to verify that the source of the
event was authorized to publish the event. Again, this is a strong limitation to the
naïve use of traditional public/key infrastructure since knowledge is required about
the origin of every possible data source. This conflicts with the desired property in
many event processing systems of decoupling between producers and consumers.
The problem of event authenticity increases if the evaluation and detection of event
patterns also cannot be trusted. In this way, additional means are needed to verify
both that an EPA operated on the correct input, and that it performed the correct
operation required to detect the desired event pattern.

6.4.3 Privacy
Privacy concerns arise for event processing systems to keep the interest of
consumers secret. Especially in decentralized event processing systems, all
processing entities and consumers contribute to the forwarding of events. To support
efficient routing and keep the content of events confidential from unauthorized
entities, many systems leak information by exploiting information inherent in the
routing tables. Privacy concerns may also occur for publishers in an EP application. If
multiple business domains interact, the propagation of a detected event pattern may
also leak additional information on data that actually led to the corresponding
pattern. Such privacy concerns are likely to conflict with other security concerns like
authenticity of events. The research challenge is to define and enact such a privacy
model

6.3 Summary
These shorter term research activities can be constructed incrementally over existing
models and tools, while the Fabric mentioned in Chapter 2 requires re-thinking of the
basic assumptions.

 59

REFERENCES

[Ammon 2009]
Rainer von Ammon, Christoph Emmersberger, Thomas Ertlmaier, Opher
Etzion, Thomas Paulus, Florian Springer: Existing and future standards for event-
driven business process management. DEBS 2009

[Barga 2007]
Roger Barga et al. Consistent streaming through time: A vision for event stream
processing. In CIDR, 2007

[Chandy 2009]
K. Mani Chandy, W. Roy Schulte: Event Processing, Designing IT Systems for Agile
Companies. McGraw Hill, 2009

[Dayal 1996]
Umeshwar Dayal, Alejandro P. Buchmann, Sharma Chakravarthy: The HiPAC Project
Active Database Systems: Triggers and Rules For Advanced Database Processing,
Jennifer Widom, Stefano Ceri (Eds.), Morgan Kaufmann/Elsevier, San Francisco, CA,
177-206, 1996.

[Etzion 2010]
Opher Etzion, Peter Niblett: Event Processing in Action. Manning, 2010

[Eugster 2003]
Eugster, P. T., Felber, P. A., Guerraoui, R., & Kermarrec, A.-M. (2003). The many
faces of publish/subscribe. ACM Computing Surveys, 35(2), pp. 114-131.

[Fabret 2001]
Françoise Fabret, Hans-Arno Jacobsen, François Llirbat,Joăo Pereira,Kenneth A.
Ross,Dennis Shasha Filtering algorithms and implementation for very fast

[Fidler 2005]
Eli Fidler, Hans-Arno Jacobsen, Guoli Li, and S. Mankovski. The PADRES Distributed
Publish/Subscribe System. In Feature Interactions in Telecommunications and
Software Systems VIII, pages 12-30, Leicester, UK, July 2005.

[Jacobsen 2009]
Hans-Arno Jacobsen, Vinod Muthusamy, and Guoli Li. The PADRES event processing
network: Uniform querying of past and future events. IT - Information Technology,
51(5)250-260, 5 2009

[Jain 2008]
Namit Jain, Shailendra Mishra, Anand Srinivasan, Johannes Gehrke, Jennifer
Widom, Hari Balakrishnan, Ugur Çetintemel, Mitch Cherniack, Richard
Tibbetts, Stanley B. Zdonik: Towards a streaming SQL standard. PVLDB 1(2): 1379-
1390 (2008)

 60

[Jain 2009]
Namit Jain, Shailendra Mishra, Anand Srinivasan, Johannes Gehrke, Jennifer
Widom, Hari Balakrishnan, Ugur Çetintemel, Mitch Cherniack, Richard
Tibbetts,Stanley B. Zdonik: Towards a streaming SQL standard. PVLDB 1(2): 1379-
1390 (2008)

[Li 2008]
Guoli Li, Vinod Muthusamy, and Hans-Arno Jacobsen. Adaptive Content-based
Routing in General Overlay Topologies. In ACM Middleware, 2008.

[Li 2010]
Guoli Li, Vinod Muthusamy, and Hans-Arno Jacobsen. A Distributed Service Oriented
Architecture for Business Process Execution. ACM Transactions on the Web, 2010.

[LINQ]
The LINQ Project. http://tinyurl.com/42egdn.

[Luckham 2002]
David Luckham: The Power of events. Addison Wesley, 2002

[Muthusamy 2009]
Vinod Muthusamy, Hans-Arno Jacobsen, Tony Chau, Allen Chan, and Phil Coulthard.
SLA-Driven Business Process Management in SOA. In CASCON, 2009.

[Muthusamy 2010]
Vinod Muthusamy, Haifeng Liu, and Hans-Arno Jacobsen. Predictive
Publish/Subscribe Matching. In ACM Distributed Event-based Systems (DEBS),
2010.

[OMG EDA]
http://soa.omg.org/SOA-docs/EDA-Standards.htm

[RuleML]
 Reaction RuleML 1.0 – EP RuleML Language Family - http://reaction.ruleml.org

[Soule2010]
R. Soule et al. A Universal Calculus for Stream Processing Languages. In ESOP,
2010.

