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Abstract

The genomic distance problem in the Hannenhalli-Pevzner (HP) theory is the following: Given
two genomes whose chromosomes are linear, calculate the minimum number of translocations,
fusions, fissions and inversions that transform one genome into the other. This paper presents a
new distance formula based on a simple tree structure that captures all the delicate features of
this problem in a unifying way, and a linear-time algorithm for computing this distance.
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1. Introduction

A genome is a collection of large linear or circular double-stranded molecules called chro-
mosomes described by their ordered sequences of nucleotides. These are smaller building blocks
that come in four shapes, usually designated by the four letters A, C, G and T. Following a
century old tradition [10], a contiguous segment of a chromosome that carries some inherited
marker is called a gene. The biological notion of gene has been under constant revision in the
last decades, but, in this paper, we will be interested in the combinatorial properties of segments
of chromosomes.

When two genomes are compared, it is common to find homologous genes between them.
Homologous genes are defined as genes that share a common ancestor and identifying homolo-
gous genes is a complex process that uses numerous algorithmic and biological techniques. A
detailed discussion of this subject is outside the scope of this paper, and the interested reader is
refered to [11]. Homologous genes may, or may not, belong to the same chromosomes in differ-
ent genomes, and their relative orientation may differ. Differences in relative orientations appear
when during the course of evolution segments of chromosomes are broken, and repaired in the
reverse direction. Homologous genes are assigned a common label, and a sign to reflect relative
orientation, allowing us to represent genomes as sets of signed sequences such as:
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GenomeA = {(o,1,2,3,4,0),(0,5,6,0)}
GenomeB = {(o,1,-2,6,0),(0,5,0), (3, -4)}

The symbol ‘o’ is used to indicate that the corresponding chromosome is a linear molecule,
and, borrowing from the biological terminology, is referred to as a telomere marker. This kind of
representation of genomes is unique up to chromosome flipping, in which the order and orienta-
tion of all genes in a chromosome are reversed, or circular permutations of circular chromosomes.
For example, (o, 1,-2,6,0) = (0,—6,2,—-1,0), and (3,-4) = (-4,3) = (4,-3) = (-3,4). In the
above example, genome A has two linear chromosomes, and genome B has two linear and one
circular chromosome. In this example, up to its sign, each gene appears once in each genome.
This is a considerable, but useful simplification with respect to biological reality, and we will
assume this is the case throughout the paper.

Several edit operations have been proposed to explain the differences between genomes. In
the case of linear genomes, that is, genomes that have only linear chromosomes, the two main
operations are inversions inside chromosomes and translocations between chromosomes. In the
first case, the order and sign of consecutive genes in a chromosome are reversed, transforming,
for example (o, 1,2,3,4,5,0) into (o, 1,2,—4,-3,5,0). In the second case, two chromosomes
exchange prefix or suffix of their sequences, transforming, for example (o, 1,2,3,4,5,0) and
(0,6,7,8,9, o) into either:

(0,1,2,8,9,0) and (0,6,7,3,4,5,0)

or
(05 15 2’ _7’ _65 O) and (O - 9’ _85 35 45 5’ O),

Special cases of translocations, such as fusions or fissions, are obtained by allowing cuts to occur
next to telomere markers and adding empty chromosomes.

The genomic distance problem for linear genomes is to compute the minimum number of
inversions and translocations that are necessary to transform one genome into the other. The
first solution to this problem was given by Hannenhalli and Pevzner [12] in 1995. Their dis-
tance formula, called the general HP theorem, requires preprocessing steps such as capping and
concatenation and involves seven parameters. In the last decade, different authors pointed to
problems in the original formula and in the algorithm given by Hannenhalli and Pevzner. Their
algorithm was first corrected by Tesler [17]. In 2003, Ozery-Flato and Shamir [16] found a
counter-example and modified one of the parameters of the distance formula. Very recently,
another correction was presented by Jean and Nikolski [14]. Unfortunately, the last two recent
results have not resulted in simpler presentations of the material, and the only available software
tool is GRIMM implemented by Glenn Tesler [18].

In contrast to this rather complicated distance measure, Yancopoulos et al. [19] presented
a general genome model that includes linear and circular chromosomes and introduced a new
operation called double cut and join (or shortly DCJ) operation. In addition to inversions and
translocations, the DCJ operation also models more complicated rearrangement operations like
transpositions and block-interchanges. Beside the simple distance computation, the sorting algo-
rithm is also basic and efficient [8].

In this paper we will show how the rearrangement model considered in the HP theory can be
integrated in the more general DCJ model. Specifically, the HP distance can be expressed as

dyp =dpcy +1
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where ¢ represents the extra cost of not resorting to “forbidden” DCJ operations. The extra cost
can easily be computed in linear time by a tree data structure associated to a genome.

The next section recalls the results on the DCJ distance. In Section 3, we establish the
conditions under which the HP and DCIJ distances are equal, which corresponds to the case
where t = 0. The general case t > 0 is treated in Section 4, where we introduce the basic
concepts and the tree needed for the computation of the HP distance, and we give a new proof
and formula for the Hannenhalli-Pevzner theorem. The algorithms for the distance computation

are described in Section 5. Finally, Section 6 presents the conclusion.

2. The Double Cut and Join (DCJ) Model

Let A and B be two linear genomes on the same set of N genes. An interval (I,...,r)ina
genome is a set of consecutive genes or telomere markers within a chromosome; the set {/, —r} is
the set of extremities of the interval — note that o = —o. An adjacency is an interval of length 2,
an adjacency that contains a telomere marker is called a telomere. Each gene g is the extremity of
two adjacencies, one as +g, and one as —g, in both genomes A and B. Given the set of adjacencies
of a linear genome, it is thus possible to uniquely reconstruct each of its chromosomes by starting
with telomeres, and listing the successive adjacencies that share extremities of the same gene.

Definition 1. Given two adjacencies {x, —y} and {u, —v} in a genome G, a double cut and join
(DC1J) operation applied on these adjacencies produces a genome in which adjacencies {x, —y}
and {u, —v} are replaced either by {x, —v} and {u, —y} or by {x, u} and {—y, —v}.

A simple interpretation of this operation in terms of consecutive segments ab and cd of
chromosomes is making two cuts, one between a and b, and the other between ¢ and d. There are
then three possible ‘repairs’: the recently cut extremity a can be joined with either b, ¢ or d, and
the two remaining extremities are joined together. Of the three possibilities, the first one yields
the original genome, but the two others change the set of adjacencies. The precise formulation
of Definition 1 takes care of the changes in gene orientations.

DCIJ operations are used to model both inversions and translocations in linear genomes. For
translocations, the two choices given in the example of the Introduction correspond exactly to the
choices in Definition 1. However, for inversions, only one choice yields linear chromosomes: for
example, applying a DCJ operation on the two adjacencies {2, =3} and {4, —5} of chromosome
(0,1,2,3,4,5, 0) may yield adjacencies {2, 4} and {-3, -5}, thus chromosome:

(O, 1’ 2’ _45 _3’ 5’ 0)7

but it could also yield adjacencies {2, —5} and {—3, —4}. In this case, the resulting genome would
contain:
(0,1,2,5,0),(-3,-4),

in which the second chromosome is a circular chromosome. Thus DCJ operations are more
general than the usual rearrangement operations on linear genomes.

The following basic construct is associated to a pair of genomes, each represented by its set
of adjacencies.

Definition 2. The adjacency graph AG(A, B) is a graph whose vertices are the adjacencies of
genomes A and B. Each gene g defines two edges, one connecting the two adjacencies of genome
A and B in which g appears as extremity +g, and one connecting the two adjacencies in which g
appears as extremity —g.
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Since adjacencies that are telomeres have only one gene, the vertices of the adjacency graph
will have degree one or two, thus the graph is a union of paths and cycles. Paths of odd length,
called odd paths, connect telomeres of different genomes, and paths of even length, the even
paths, connect telomeres of the same genome. For example, the adjacency graph of genomes

= {(o,1,-2,0),(0,3,6,0),(0,5,4,0)} and B = {(o, 1,2,3,4,0), (0,5, 6, 0)} has four odd paths,
one cycle and one even path:

{o,—1} {3,-6} {6, — {o, —
{o,—1} -4} {4, - {o, — {5, -6} {6, —o}

(1.-2}  {2,-3} 3,

It is interesting to note that a DCJ operation applied to two adjacencies of the same genome
disconnects the incident edges of the adjacency graph, and reconnects them in one of the possible
other ways. The DCJ distance between genomes A and B, dpc,(A, B), is the minimum number
of DCJ operations necessary to transform genome A into genome B. We have:

Theorem 1 ([8]). Let A and B be two genomes defined on the same set of N genes, then we have
dpci(A,B) = N—-(C+1/2)

where C is the number of cycles and I the number of odd paths in AG(A, B). An optimal sorting
sequence can be found in O(N) time.

A DCIJ operation that reduces the DCJ distance by 1 is called DCJ-sorting. Using Theorem 1,
we have the following property of DCJ-sorting operations, using the fact that a DCJ operation
acts on at most two paths or cycles, and produces at most one new path or cycle:

Corollary 1. A DCJ-sorting operation acts on a single path or cycle, or on two even paths of
the adjacency graph.

As we saw earlier, some DCJ operations can create intermediate circular chromosomes, even
if both genomes A and B are linear, and we will want to avoid them in the HP model. The
following definition is a generalization of a classical concept in rearrangement theory, oriented
operations:

Definition 3. A DCJ-sorting operation is oriented if it does not create circular chromosomes.

For two linear genomes, oriented operations are necessarily inversions, translocations, fu-
sions or fissions. These operations are also called HP operations, and the HP distance dyp(A, B)
is the minimum number of HP operations needed to transform genome A into genome B. Since
DCIJ operations are more general than HP operations, the following lower bound is immediate:

Proposition 1. For two linear genomes A and B, the following inequality holds:

dpcy(A, B) < dyp(A, B).
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The non-negative number
t=dyP —dpCJ

thus counts the extra rearrangement operations that are necessary in order to avoid the creation of
circular chromosomes. In the next section, we characterize genomes for which the two distances
are equal, thatis t = 0.

3. Components and Oriented Sorting

In this section, we introduce the notion of components. They roughly correspond to the
classical concept of connected components of the overlap graph, but in the context of adjacency
graphs, we prove that they are unions of paths and cycles.

3.1. Basic Definitions

Definition 4. Given two genomes A and B, an interval (J,...,r) of genome A is a component
relative to genome B if there exists an interval in genome B:

a) with the same extremities,

b) with the same set of genes, and

¢) that is not the union of two such intervals.

Example 1. Let

A = {(07271737574’0)7(0»677,_11a_9’_10»_87127 1670)5(05157 14,_137 1770)}’
B = {(o0,1,2,3,4,5,0),(0,6,7,8,9,10,11,12,0), (0, 13,14, 15,0), (o, 16,17, 0)}.

The components of genome A relative to genome B are: (o,2,1,3), (3,5,4,0), (0,6), (6,7),
(-11,-9,-10,-8), (7,-11,-9,-10, -8, 12), (o, 15, 14,—13) and (17, o).

Note that components of length 2 are the same adjacencies in both genomes, possibly up to
flipping of a chromosome. These are called trivial components. All other components are non-
trivial.

Two components are nested if one is included in the other and their extremities are different.
As the following lemma shows, two components cannot share a telomere:

Lemma 1. If(o,...,r)and(o,...,r,..., ;) aretwo components, thenry = ry, andif (1, ..., b, ...
and (I, . . ., 0) are two components then [, = [,.

Proor. Suppose that (o,...,r;)and (o,...,ry,..., ;) are two components. Since the correspond-
ing intervals in genome B, (o,...,r;) and (o, ..., ry), share the same gene content, the interval
(r1,...,1rp) shares the same gene content in both genomes, thus (71, ...,7;) is a component, and
(o,...,11,...,12) is the union of two components, a contradiction. The second statement has a
similar proof. O

It is further known that two components can not overlap on two or more elements. We thus
have the following generalization of a statement from [9]:

Proposition 2. Twwo components are either disjoint, nested, or overlap on exactly one gene.

5
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Proposition 2 implies that components can be partially ordered by inclusion, and that over-
lapping components will have the same parent, if it exists. An adjacency properly belongs to the
smallest component that contains it.

Definition 5. The adjacency graph of a component C is the subgraph of the adjacency graph of
genomes A and B induced by the adjacencies that properly belong to C.

An important property of the adjacency graph is the following:

Proposition 3. The adjacency graph of a component is a union of paths and cycles of the adja-
cency graph of genomes A and B.

Proor. Let C = (I,...,r) be a component. Since it has the same gene content and the same
extremities as the corresponding interval in genome B, all edges of the adjacency graph that are
within the interval (/,...,r) in genome A will also be within the interval (/,...,r) in genome A.

Thus all these edges form a union of paths and cycles of the adjacency graph of genomes A and
B.

Each component that is nested in C is also a union of paths and cycles of the adjacency graph
of genomes A and B, and none of them contains an adjacency that properly belongs to C. We can
thus remove them without compromising the connectivity of the adjacency graph of C. O

3.2. Oriented Sorting

In this section we will characterize genomes for which the DCJ distance and the HP distance
are equal. We first consider sorting involving only one component. In particular, we apply well
known results from the inversion theory that are obtained by working on permutations.

Since the naming and orientation of genes is relative, we can always assume that all genes
in a chromosome of genome B are positive and in increasing order. The proper adjacencies of a
component C = (/,...,r) induce a partition in the corresponding intervals of genomes A and B
into sub-intervals that we will subsequently call blocks.

If we label the blocks in the interval of C in genome B with numbers from 1 to k, the corre-
sponding blocks of the interval of C in genome A will be a signed permutation (py, . .., px) of the
elements {1, ..., k}. We will call this permutation — or its reverse — the permutation associated to
the component C.

Consider for example the following two genomes:

A = {(0 -5,1,3,-2,4,6,-10,9,8,-7,11 o)},
B {(01,2,3,4,5,6,7,8,9,10,11 o)}.

The components of A with respect to B can easily be seen in the following diagram:

[s]01] [310-2] [4] [6] [-1o] [o][8] [-7][11]

The component (o, ..., 6) consists of three blocks: the gene —5, the component (1,...,4) and
the gene 6. Thus, the permutation associated to the component (o,...,6) is (-2, 1,3). For the
other three non-trivial components, the associated permutations are (1,3,-2,4), (-4,3,2,-1)
and (1, -2, 3).




As stated in Corollary 1, a DCJ-sorting operation increases either the number of cycles or the
number of odd paths. When the elements of the permutation associated to a component have both
positive and negative signs, then there exists a pair of consecutive elements with opposite signs.
This implies that there exists a DCJ-sorting inversion that increases the number of cycles by
creating an adjacency of the form (i, i+ 1) or (—(i+ 1), —i). For instance, the permutation (-2, 1, 3)
associated to component (o, ...,6) in the above example admits the DCJ-sorting inversion of
element 1, creating the adjacency of elements (-2, —1). This corresponds to the adjacency of
genes (-5, —4) in the component (o, . .., 6), yielding a new genome

A ={(c —5,-4,2,-3,-1,6,-10,9,8,-7,11 o)}.

Components whose associated permutations have only elements with the same sign are more
intricate. We will see later that some of them can be optimally sorted by DCJ-sorting operations,
others not. For example, consider the pair of genomes:

A={(0,4,3,2,1,0)} and B={(c,1,2,3,4,0)},

whose associated permutation is (4, 3,2, 1). There exists a DCJ-sorting operation that is a path
fission increasing the number of odd paths. The DCJ distance is 4, and it can be optimally sorted
by inverting each of the four genes. However, we have:

Lemma 2. If all elements of the permutation associated to a component have the same sign,
then no inversion acting on one of its paths or cycles can create a new cycle.

Proor. By possibly flipping the chromosome, we can assume that all the elements of the permu-
tation are positive. Suppose that an inversion is applied to two adjacencies (+i, +j) and (+k, +1)
in a single path or cycle of the component, and that this creates a new cycle. The new adjacen-
cies will be (+i, —k) and (—j, +[), where at most one of +i and +/ can be a telomere. If both of
these new adjacencies belong to the same path or cycle, there was no creation of a new cycle.
Suppose that the adjacency (+i, —k) belongs to the new cycle, then all other adjacencies of this
cycle existed in the original component, and are composed of positive elements. This, however,
is impossible by the construction of the adjacency graph. ([

Definition 6. A component is oriented if there exists an oriented DCJ-sorting operation that acts
on the vertices of its adjacency graph, otherwise it is unoriented.

Oriented components are characterized by the following:

Proposition 4. A component is oriented if and only if either its associated permutation has pos-
itive and negative elements, or its adjacency graph has two even paths.

Proor. If the associated permutation has positive and negative elements, then there is at least one
change of signs between blocks labeled by consecutive integers. Thus, there exists an inversion
that creates an adjacency in genome B, thus a new cycle, and the inversion is DCJ-sorting. If
there are two even paths, then one of them must be a path from genome A to genome A, and the
other one must be a path from genome B to genome B. An inversion in genome A that acts on
one adjacency in each path creates two odd paths, thus is DCJ-sorting.

In order to show the converse, suppose that all elements of the associated permutation are
positive, and all paths are odd. By Corollary 1, a DCJ-sorting operation must act on a single
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path or cycle. This operation cannot be a translocation or a fusion since all paths and cycles
of a component are within the same chromosome. This operation cannot be an inversion, since
inversions that create new cycles are ruled out by Lemma 2, inversions acting on a single odd
path cannot augment the number of odd paths, and inversions acting on cycles never create paths.
Finally, this operation cannot be a fission: a fission acting on a cycle creates an even path; and
a fission acting on an odd path must circularize one of the chromosome parts in order to be
DCJ-sorting, otherwise it would be split into an even path and an odd path. (]

As a consequence of Proposition 4, we have dpcj(A, B) < dyp(A, B) in the presence of un-
oriented components, since all DCJ-sorting operations will create circular chromosomes. On the
other hand, well-known results from the Hannehalli-Pevzner theory show that, when all com-
ponents admit a sorting inversion, then it is possible to create a new cycle at each step of the
sorting process with HP operations, without creating unoriented components [13]. We will see
in the next propositions that the same type of result can be obtained in this context. According
to Proposition 4, it will be useful to treat components with paths and components without paths
separately.

Definition 7. Components whose two extremities are both genes, are called real components.
Components that contain one or two telomeres are semi-real components.

First, let us consider oriented real components that are well studied in the context of sorting
by inversions. In [13], it was first shown that oriented real components can be sorted optimally
by oriented inversions. This relies on the fact that among all possible oriented inversions there
always exists one that does not create new unoriented components. Such an inversion is called
a safe inversion and can be found by trial and error. More sophisticated techniques to efficiently
find safe inversions can be found in [2, 3, 15].

Proposition 5 ([13]). An oriented real component has an oriented DCJ-sorting operation that
does not create new unoriented components.

As a consequence of Proposition 5, it is possible to sort real components with oriented DCJ-
sorting inversions as shown in the next proposition.

Proposition 6. A real component can be sorted with oriented DCJ-sorting operations if and only
if it is oriented.

Proor. If a real component can be sorted by oriented DCJ-sorting operations, then, by definition,
the component is oriented. If a real component is oriented, then there exists an oriented DCJ-
sorting inversion and Proposition 5 guarantees that there will always be enough oriented DCJ-
sorting inversions to sort the component. (]

Now, we come to the semi-real components. First, we consider semi-real components whose
associated permutation has positive and negative elements. As it turns out, these components can
be treated in the same way as oriented real components by adding extra genes.

Proposition 7. An oriented semi-real component whose associated permutation has positive and
negative elements can be sorted with oriented DCJ-sorting operations.



Proor. We will show that such components can be embedded in oriented real components with
the same DCJ distance. Then, we can sort the component with oriented DCJ-sorting operations.
Let (pi, ..., pr) be the permutation of the elements {1, ..., k} associated to a semi-real compo-
nent. Suppose first that p; = k, then we must have p; # 1, otherwise the component would be
real. This implies that, in the adjacency graph of (o, py,..., p,...) and (o, 1,...,k,...), there is
an odd path that joins the telomeres at p; and 1. Adding a gene number 0 next to both telomeres
transforms the odd path into a cycle and an odd path of length 1, thus preserves the DCJ distance.
The new component is real. If p; = 1, a similar arguments holds.

If both p; # 1 and p; # k, then the telomere at 1 is either joined by an odd path to p; or
pr. In the second case, reverse the permutation and rename the elements. Thus we can assume
that the telomere at 1 is joined to p;, and the telomere at k is joined, also by an odd path, to p.
Adding a gene 0 next to both telomeres 1 and p;, and a gene k+ 1 next to both telomeres k and py
transforms the two odd paths into cycles, and adds two odd paths of length 1, thus also preserves
the DCIJ distance. (]

Oriented components must sometimes be sorted with fissions. This is the case for semi-real
components with even paths, but care must be taken on which fission to apply. Such components
have two paths, one of them connecting two telomeres of A and one connecting two telomeres of
B, as in genomes:

A={(0,4213,0} and B={(c,1,2,3,4,0)}

A fission creating telomere (4, o) would create the new semi-real component (1, ..., 3), but the
fission creating telomere (o, 1) is safe. In general, we have:

Proposition 8. An oriented semi-real component whose adjacency graph has two even paths
can be sorted with oriented DCJ-sorting operations.

Proor. Let C = (I,...,r) be a semi-real component with two even paths. Consider the permu-
tation (pi, ..., pr) associated to C. If the permutation is oriented, then it is possible to sort the
component with oriented DCJ-sorting operations by Proposition 7.

If the permutation is unoriented, then all genes p; to p; have the same sign. Without loss
of generality, we assume that they are all positive. The path connecting the two telomeres of
genome B implies two possible fissions: fission Fy creating telomere (k, o) and fission F} creating
(o, 1). If one of these fissions creates a new unoriented component, then it must be a semi-real
component, otherwise it must have existed before the fission. This implies that if F} creates a
new component, this component contains element 1, and if F; creates a new component, this
component contains element k.

Suppose that p; = 1 precedes p; = k. If fission F creates a new component, it must contain
element 1, but since the interval also contains element k, it must contain all elements. The same
argument applies to fission Fj.

Now suppose that p; = k precedes p; = 1, and that both F; and F; create new components.
Then, one chromosome of genome A is given by

(°,p1,~~-,pi—1, k, Pi+1s---5Pj-15 19 pj+13~~-’pk9o)'

Let (I;,...,r;) and (I, ..., ;) be unoriented components created by fissions Fy, respectively F.
Since fission F; yields the chromosomes

(Ovpls“'»pi—l’ k,O)and(O, Pi+1s---5PDj-15 ]7 pj+l5'~"pk70)’
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the newly created component (/y, ..., r;) must contain element 1 and be in the beginning of the
second chromosome, otherwise it would have existed before. On the other hand, fission F
creates chromosomes:

(o, p1,..->Pi-1> Kk, pixi,...,pj-1,0)and (o, 1, pjs1,..., Pk, 0).

By a similar argumentation, the component (/5,...,r;) is at the end of the first chromosome
and contains element k. This means that the genes in the set {p;,1,..., p;-1} are in the begin-
ning and at the end of a chromosome of B. But, since each gene occurs exactly once, the set
{Pi+1, ..., pj-1} must be empty, implying that i + 1 = j. Thus, both fissions create the following
two chromosomes

(o5p19“"pi—19 kvo) and (O, 1’ pj+1»~--’pk»°)~

But, a component (/1,. .., ;) in the end of the first chromosome would be a real component. This
contradicts the fact that the component was newly created by the fission. Also, contradicting our
assumption, (l,...,r;) cannot be created by a fission. Thus, we have shown that at least one of
the two fissions does not create any new unoriented components. O

Until now, we have dealt only with single components. Now, we will turn to the general
problem of sorting linear genomes. In addition to inversions, this requires DCJ operations that
change the gene content of one or more chromosomes of genome A, which are translocations,
fusions and fissions, called generalized translocations. Generalized translocations never create
circular chromosomes, thus we have:

Proposition 9. Given two linear genomes A and B, if at least one adjacency of A does not belong
to a component, then there exists at least one sorting generalized translocation.

Proor. Suppose that there exist no sorting generalized translocations, i.e., the only oriented DCJ
operations are inversions. This implies that all other possible DCJ-sorting operations create
circular chromosomes, thus act on a single chromosome of genome A. Thus all chromosomes of
genome A have a corresponding chromosome in genome B with the same gene content.

When two chromosomes in genome A and B have the same gene content, either the whole
chromosome is a component, or it is a union of components, since the whole interval satisfies
conditions a) and b) of Definition 4. Thus all adjacencies belong to a component. O

The next proposition is the key, it says that for any generalized translocation that creates an
unoriented component there always exists an alternative DCJ-sorting operation that does not.
This statement, already proven in the context of sorting by internal translocations [7], is here
extended to the general case of multi-chromosomal genomes.

Proposition 10. Given two linear genomes A and B, if a sorting generalized translocation cre-
ates an unoriented component, then there exists another sorting generalized translocation that
does not.

Proor. Consider all sorting generalized translocations, and let C be a smallest unoriented com-
ponent created by any of them, let’s say translocation 7. We will show that there is always an
alternative generalized translocation that does not create unoriented components, or C is not the
smallest. We will distinguish three cases:
.c=(...,n
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2.C=(l,...,0) [or the symmetric case (o,...,r)]

3.C=(o,...,0)

In each case, we will distinguish whether a) elements of C belong to different chromosomes
of genome A, or b) they all belong to the same chromosome.

Case 1.a In this case, genome A can be written as

(o,...,0L,...,a,...,0)and (o,...,b,...,r,...,0)

and component C as (/,...,a,b,...,r). Since components must have more than two elements,
we may assume that / # a. The case b # r is symmetrical.

The goal is to find an alternative translocation that creates an adjacency (M, M + 1) such that
M e (l,...,a)but different froma,and M + 1 € (b,...,r). If a = max(l,...,a), choose M as the
smallest element of (/,...,a) such that M + 1 isin (b, ...,r). Such an element M always exists,
otherwise (/,...,a) would already be a component in genome A, thus C would be the union of
two smaller components. If a # max(/,...,a), set M to max(l,...,a).

The two chromosomes of genome A can therefore be written as

(o...,L,....M,...,a,...,0)and (o,...,b,.... M+ 1,...,r,...,0).

Applying the translocation that creates adjacency (M, M + 1) results in a genome A" with chro-
mosomes:
C,..., ... MMM+1,...,r,...,0)and (o,...,b,...,a,...,0).

Since both cuts of the new translocation are between elements of the interval (/,...,r), and
elements of these intervals are on different chromosomes in genome A’, any newly created com-
ponent would be strictly shorter than (/, .. ., r). The new translocation is sorting since it creates a
cycle corresponding to the adjacency (M, M + 1).

Case 1.b If all elements of the interval C = (I,...,r) were in the same chromosome in
genome A, C was already a real component in genome A.

Case 2.a In this case, genome A can be written as

(o,...,1,...,a,...,0)and (o,...,b,...,0)

and component C as (/,...,a,b,...,0).

If | = a, then b must be different from a + 1, otherwise C would be the union of two smaller
components, thus setting M = a provides an alternative translocation.

If [ # a, the argument is similar to Case 1.a.

Case 2.b In this case, genome A can be written as

(o,...,1,...,a,...,0)and (o,...,0)

and component C as (/,...,a,0). We have a # max(l, ..., a), otherwise C would have already
been a real component in genome A. Let M = max(/,...,a), and consider the generalized
translocation that creates telomere (M, o) instead of telomere (a, o).

We must first prove that this new translocation is sorting. Since (/,...,a, o) is a semi-real
component, this implies that both adjacencies (a, o) in genome A" and (M, o) in genome B are on
the same odd path of the new adjacency graph of A’ and B, thus were on the same path P of the
adjacency graph of genomes A and B, implying that both translocations acted on two adjacencies
of path P, sharing one of them. Since T either creates a cycle or two new odd paths, it is also
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true for the new translocation because it creates a path of length 1 defined by the telomere (M, o)
in both genomes A’ and B.

Finally, any newly created component must contain M and not a, thus would be strictly
shorter than C.

Case 3.a In this case, genome A can be written as

(o,...,a,...,0)and (o,...,b,...,0)

and component C as (o,...,a,b,...,0).
Suppose that interval (o, ..., a) has at least two elements, thus can be written (o, d’, ..., a).
If there exists an element M different from a in interval (o,a’,. .., a) such that M + 1 belongs
to (b,..., o), creating the adjacency (M, M + 1) provides an alternative translocation.

Else, every element, except a, has its successor in (o, @', . . ., a), implying that a = max(o, d’, ...

Furthermore, we have a’ # min(o,d’,...,a), since this would make (o, d’, ..., a) a real compo-
nent in genome A. Let m = min(o,d’,...,a). Element m cannot be the minimum of interval
C = (o,...,a,b,...,0), since, this time, this would make (o,d’,...,a) a semi-real component
in genome A. Thus m — 1 belongs to interval (b, ..., o), and creating the adjacency (m — 1,m)
provides an alternative translocation.

Both alternative translocations have at least one cut between two elements of interval (¢/, . . ., a),

thus any new unoriented component would be shorter than C.

The argument is similar if interval (b, ..., o) has at least two elements.

Case 3.b Here we suppose that a becomes telomere (a, o). The case when a becomes telom-
ere (o, a) is symmetrical. In this case, genome A can be written as

(o,...,a,...,0)and (o,...,0)
and component C as (o,...,a,0). Again, we have a # max(o,...,a), otherwise C would have
already been a semi-real component in genome A. The rest of the argument is similar to Case
2.b. (]

Finally, we have all necessary ingredients for the main result of this section.

Theorem 2. Given two linear genomes A and B, dyp(A, B) = dpcj(A, B) if and only if there are
no unoriented components.

Proor. The “if” part comes from the fact that we can sort a genome without unoriented com-
ponents with DCJ-sorting operations (Propositions 7, 8 and 10), adding the fact that semi-real
components whose graphs have even paths can be “destroyed” by fissions. The “only if” part
comes from the fact that if there are unoriented components, then dpc;(A, B) < dyp(A, B), since
we showed in Proposition 4 that all DCJ-sorting operations create circular chromosomes in these
cases. d

4. Computing the General HP Distance

In this section we will show that, given the DCJ distance dpc,, one can express the Hannenhalli-

Pevzner distance dyp in the form
dyp = dpcy +1,

where ¢ represents the additional cost of not resorting to unoriented DCJ operations. First, we

describe how to destroy unoriented components in Section 4.1 and after that, in Section 4.2, we

compute the additional cost from the inclusion and linking tree of the unoriented components.
12



4.1. Destroying Unoriented Components

Destroying unoriented components can done by applying a DCJ operation either on one com-
ponent in order to orient it, or on two components on the same chromosome in order to merge
them, and possibly others, into a single oriented component. When a DCJ is applied to com-
ponents on different chromosomes, the components are destroyed together with all components
that contain them. By using the nesting and linking relationship between components, one can
minimize the number of operations necessary to destroy unoriented components.

When two components overlap on one element, we say that they are linked. Successive
linked components form a chain. A chain that cannot be extended to the left or right is called
maximal. We represent the nesting and linking relations between components of a chromosome
in the following way:

Definition 8. Given a chromosome X of genome A and its components relative to genome B,
define the forest Fx by the following construction:

1. Each non-trivial component is represented by a round node.

2. Each maximal chain that contains non-trivial components is represented by a square node
whose (ordered) children are the round nodes that represent the non-trivial components of
this chain.

3. A square node is the child of the smallest component that contains this chain.

Now, we define a tree associated to the components of a genome by combining the forests of
all chromosomes into one rooted tree:

Definition 9. Suppose genome A consists of chromosomes {X1, X, ..., Xx}. The tree T associ-
ated to the components of genome A relative to genome B is given by the following construction:

1. The root is a round node.
2. All trees of the set of forests {Fx,, Fx,, ..., Fx,} are children of the root.

The round nodes of T are painted according to the following classification:

1. The root and all nodes corresponding to oriented components are painted black.

2. Nodes corresponding to unoriented components that do not contain telomeres are painted
white.

3. Nodes corresponding to unoriented components that contain one or two telomeres are
painted grey.

The tree associated to the components of the genomes A and B of Example 1 is shown in
Fig. 1. Note that grey nodes are never included into other components.

The following two propositions are general remarks on components and are useful to show
how to destroy unoriented components.

Proposition 11 ([7]). A translocation acting on two components cannot create new components.

Proposition 12 ([6]). An inversion acting on two components A and B creates a new component
D if and only if A and B are included in linked components.

Now, we have all necessary results to get rid of unoriented components. The following
two propositions are straightforward generalizations of well-known results from the sorting by
inversion theory [5]. We will start by looking at one single unoriented component.

13



Figure 1: The tree T associated to the genomes A and B of Example 1 has two grey leaves, one white leaf and one black
leaf.

Proposition 13. If a component C is unoriented, any inversion between adjacencies of the same
cycle or the same path of C orients C, and leaves the number of cycles and paths of the adjacency
graph of C unchanged.

Orienting a component as in Proposition 13 is called cutting the component. Note that this
operation leaves the DCJ distance unchanged, and does not create new components.

It is possible to destroy more than one unoriented component with a DCJ operation acting on
two unoriented components. The following proposition describes how to merge several compo-
nents, and the relations of this operation to paths in the tree 7'.

Proposition 14. There always exists an HP operation acting on adjacencies of two different
unoriented components A and B that destroys, or orients, all components on the path from A to
B in the tree T, without creating new unoriented components or circular chromosomes.

Proor. If A and B are in different chromosomes, then we apply a translocation to destroy A and
8. As stated in Proposition 11, such a translocation cannot create new unoriented components.
Moreover, all components that contain either A or B are also destroyed by the translocation.
Thus, all components on the path are destroyed.

If A and B are in the same chromosome, then we apply an inversion to destroy A and B.
By Proposition 12, the only component eventually created by an inversion is the union of two or
more linked components. Since linked components have extremities with the same sign, the sign
of the links will be different from the sign of the extremities of the new component, thus it will
be oriented.

Now, if the components A and B are not included in linked components, then the lowest
common ancestor must be a round node, either the root, or a component C that is on the path
from A to B and that contains both. In the latter case, components A and B must be real, thus
the inversion merges two cycles, one from each component, into one new cycle. If A and B
are unoriented, the new cycle contains at least one oriented adjacency. Since C is the smallest
component that contains the new cycle, C will be oriented.

Finally, for any component C on the path from A to $ and that contains either A or B, but
not both, the inversion changes the sign of one of the extremities of C, and C will be destroyed.
O

If the HP operation acts on two odd paths, thus on grey components, then merging the two
components can be done without changing the number of odd paths, and the DCJ distance is
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unchanged. If the HP operation involves at least one cycle, then merging two components de-
creases the number of cycles by one, and the DCJ distance will increase by 1 in the resulting pair
of genomes.

4.2. Unoriented Sorting

Let T be the tree associated to the components of genome A relative to genome B, and let 7’
be the smallest subtree of T that contains all the unoriented components, that is, the white and
grey nodes.

Definition 10. A cover of T’ is a collection of paths joining all the unoriented components, such
that each terminal node of a path belongs to a unique path.

A path that contains two or more white or grey components, or one white and one grey
component, is called a long path. A path that contains only one white or one grey component, is
a short path.

The cost of a cover is defined to be the sum of the costs of its paths, where the cost of a path
is the increase in distance caused by destroying the unoriented components along the path. More
precisely, the cost of a path represents the sum of one extra HP operation and the variation of the
DCIJ distance. Using the remarks following Propositions 13 and 14, we have:

1. The cost of a short path is 1.
2. The cost of a long path with only two gray components is 1.
3. The cost of all other long paths is 2.

An optimal cover is a cover of minimal cost. Define ¢ as the cost of any optimal cover of 77. We
first establish that 7 is the difference between the two distances, using the following terminology:

Definition 11. Given genomes A and B, we call a DCJ operation applied to genome A
e proper, if it decreases dpc (A, B) by one, i.e. A(C +1/2) =1,
e improper, if dpc (A, B) remains unchanged, i.e. A(C + I/2) = 0, and
e bad, if it increases dpc (A, B) by one, i.e. A(C + 1/2) = —1.

Theorem 3. Ift is the cost of an optimal cover of T’, the smallest subtree of T that contains all
the unoriented components of genome A relative to genome B, then:

dgp(A, B) = dpcy(A, B) +1.

Proor. First, we will show that dyp(A, B) < dpcy(A, B) + t. Consider any cover of the tree T”.
Let

ww be the number of long paths with only white components,

wg be the number of long paths with white and grey components,

gg be the number of long paths with only grey components,

w be the number of short paths with one white component,
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e g be the number of short paths with one grey component.

Clearly, we have that the cost ¢’ of this coveris ¢ = 2ww + 2wg + gg + w + g.

Suppose that the adjacency graph AG(A, B) has C cycles and I odd paths. Applying ww + wg
bad DCJ operations and gg +w + g improper DCJ operations yields a genome A’. Since each bad
DCIJ operation merges two cycles or one cycle and a path, the number of cycles in AG(A’, B) is
C — ww — wg. Note that the number of odd paths remains unchanged. Therefore, by Theorem 2,
we have that

dyp(A, B)

IA

dup(A',B) +ww+wg+gg+w+g

1
N—(C+§)+2ww+2wg+gg+w+g
dDC](A, B) + t.

Thus, since the above equation is true for any cover, we have: dyp(A, B) < dpc;(A, B) + t.

The fact that dyp(A, B) > dpcj(A, B) + t is a consequence of the fact that an optimal sort-
ing with HP operation necessarily induces a cover of 7" since all unoriented components are
eventually destroyed. (]

It remains to establish a closed formula for 7. A first easy but significant result on the size of
t is the following lower bound. Let w be the number of white leaves and g be the number of grey
leaves in 7”. Since destroying a white leaf costs at least 1 and destroying a grey leaf costs at least
1/2, and ¢ is an integer, we have:
;|
+|Z =t
v [2

It is quite remarkable, as was observed in the original paper on HP distance [12], that this bound
is at most within one rearrangement operation from the optimal solution, i.e. t = w + [é-‘ or

2
A branch in a tree is called a long branch if it has two or more unoriented components. A tree

is called a fortress if it has an odd number of leaves, all of them on long branches. A standard
theorem of the sorting by inversion theory states that the minimal cost to cover a tree that is not
a fortress is £, the number of leaves of the tree, and ¢ + 1 in the case of a fortress [13].

The closed formula for ¢ is now given in the following two theorems.

t=w+[5-‘+1.

Theorem 4. Let w be the number of white leaves and g be the number of grey leaves in T’,
the smallest subtree of T that contains all the unoriented components of genome A relative to
genome B. If the root of T’ has more than one child with white leaves, then the minimal cost of
a cover of T' is:

t=w+ [%] if the smallest subtree T” that contains all the white leaves
of T’ is not a fortress, or g is odd,
t=w+[51+1 otherwise.

Proor. If the subtree 7" is not a fortress then it admits a cover of cost w, and pairing the maxi-
mum number of grey nodes yields a cover of T’ costing w + [§71. If the subtree 7" is a fortress,
then one of its white leaves is not paired with another leaf since the number of leaves is odd. A
cover of T’ can be obtained by pairing this white leaf with a grey leaf, which exists if g is odd.
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The resulting cost will be again w + [%] which equals the lower bound, and thus the cover is
optimal.

If the subtree is a fortress and g is even, we can construct a cover costing (w + 1) + g/2, using
the cover of the fortress and pairing the grey nodes. To show that this cost is minimal, suppose
that k grey nodes are paired with k white nodes, and the remaining white and grey nodes are
paired separately. If k is even, then the cost of such a cover would be (w —k + 1) + (g — k)/2 + 2k,
which is greater than or equal to (w + 1) + g/2. If k is odd, then the cost of this cover is (w — k) +
(g —k+ 1)/2 + 2k, which is again greater than or equal to (w + 1) + g/2. [l

When all the white leaves belong to a single child of the root, the situation is more deli-
cate. Define a junior fortress as a tree with an odd number of white leaves, all of them on long
branches, except one that is alone on its branch, called the fop of the fortress. We have the
following:

Theorem 5. Let w > 0 be the number of white leaves and g > 0 be the number of grey leaves in
T’, the smallest subtree of T that contains all the unoriented components of genome A relative
to genome B. If the root of T' has only one child c with white leaves then the minimal cost of a
cover of T’ is:

t=w+ |'§'| if g is odd and the subtree T, that is rooted at c
is neither a fortress nor a junior fortress with c as its top,
t=w+ [%] + 1 otherwise.

Proor. Suppose first that g = 1, then the only grey leaf either belongs to T, or not. In the first
case, this grey leaf must be the child ¢ implying that T, is not a junior fortress. If 7. is not a
fortress, then there exists a cover with minimal cost equal to the number of leaves of 7, which is
given by w + |"§'|, since g = 1. If T, is a fortress, then the minimal cost of a cover is w + |'§'| + 1.

In the other case, i.e. the grey leaf does not belong to T, then if T is a fortress or a junior
fortress with ¢ as its top, the whole tree 7” is a fortress with w + [%] leaves, yielding a cost of
w + [%] + 1. Otherwise, if T, is neither a fortress nor a junior fortress, then 7’ can not be a
fortress, and hence can be destroyed with costw + 1 = w + |'§'|.

The same argumentation holds for any g > 1 if g is odd.

Now, we consider the case g = 2. If T, is a fortress, two of the white leaves in 7. can be
paired with the two grey leaves outside 7. at cost 4. This eliminates the two grey leaves, two of
the long white branches, and the branch containing ¢. The remaining w — 2 long branches are
paired at cost w — 2. Together, this gives a cover of cost 4 + w —2 = w +[§] + 1. This is optimal
since the cost of 77 is the same as for 7. If T, is not a fortress, we do not need to pair white and
grey leaves. T, can be covered with cost w + 1 and the g grey leaves are paired with cost |'§'|,
giving again a total cost of w + [%] + 1.

If g > 2 and g is even, it is always possible to pair the grey leaves, as long as there are more
than two left, and then apply the case g = 2. This gives the same cost w +[57] + 1. (]

For example, the genomes A and B of Example 1 have N = 17 genes. The adjacency graph
AG(A, B) has C = 3 cycles and I = 6 odd paths. After removing the dangling black leaf, the tree
T’ has g = 2 grey leaves and w = 1 white leaf (see Fig. 1). Therefore, by Theorem 5, we have
¢t = 2 and thus

1
de(A,B)zN—(C+§)+t=17—(3+3)+2=13.
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5. Algorithms

The goal of this section is to present a linear time algorithm to compute the HP distance
between two linear genomes based on Theorem 3. We first give an overview of this algorithm,
and then present the individual steps in more detail in Sections 5.1-5.3.

Assume that two linear genomes A and B are given, then the algorithm consists of five steps:

Construct the adjacency graph AG(A, B);

Compute the cycles and paths of AG(A, B);

Compute the components of A with respect to B;

Construct the trees 7 and 7" associated to genomes A and B;
Compute the cost ¢ of an optimal cover of 7.

AR e

5.1. Construction of the Adjacency Graph

The first two steps can be solved in linear time as shown in [1, 8]. The construction of the
adjacency graph and the DCJ distance computation are given in Algorithm 1 in [8]. By a simple
extension of the data structure described there, one can also store for each adjacency whether it
belongs to a cycle, an even or an odd path.

5.2. Identification and Classification of Components

For two multichromosomal genomes A and B defined on the set of genes {1,..., N}, we give
an algorithm to compute the components of genome A with respect to B. In the following, we
modify the algorithm for unichromosomal genomes [6] such that not only real, but also semi-real
components are identified.

Equivalently to Definition 4, a real component can be described as an interval from i to (i + j)
or from —(i + j) to —i, for some j > 0, whose set of unsigned elements is {i, ..., i + j}, and that is
not the union of two such intervals [6]. The elements i and i + j are called the bounding elements.
If the bounding elements have positive sign, then the component is called direct, otherwise the
component is a reversed component.

In order to extend the notion of direct and reversed components to semi-real components, we
replace the telomere markers by caps such that the left and the right end of a chromosome are
different and that they also have a sign. More concretely, we transform the genome A into two
strings: First, we add O at the beginning and N + 1 at the end of each chromosome of genome
A and chain its chromosomes into a string P*. Similarly, we add —(N + 1) at the beginning and
—0 at the end of each chromosome of genome A and chain its chromosomes into a string P~. If
genome A consists of K chromosomes, then both strings P* and P~ have length / = N + 2K.

Compared to the uni-chromosomal case, we need to do some extra work in order to identify
components: The chromosomes of B are numbered consecutively and an array c stores for each
gene in A its chromosome number in B. More precisely, if P*[i] = P~[i], then c[{] is the chro-
mosome number in B of the element at index i. Otherwise, at index i is a chromosome end and
c[i] gets the chromosome number of its adjacent gene.

Now, with the help of array ¢, we are able to describe components of genome A and B as
intervals in the strings P* and P~. Depending whether the bounding elements are caps or genes,
there are eight different types of components: four direct components shown at the left and four
reversed components shown at the right of Fig. 2.
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Type II:
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4]

i+1,...i+j-1}

Figure 2: Left: Direct components. Right: Reversed components.

Example 2. Consider the genomes A and B of Example 1 with N = 17 genes:

A = {(052’ 1’3’ 5’4’ O)’ (076777_11’_95_107 _8’ 12’ 167 O)’(O’ 15’ 147_13’ 17, O)}’
B = {(0,1,2,3,4,5,0),(0,6,7,8,9,10,11,120), (0,13, 14, 15, 0), (0, 16, 17, 0)}.

By replacing the telomere markers by the caps 0 and 18 (or —18 and —0), we get the string
P~ (or P~ respectively) and the array c that stores the chromosome in B for each gene:

P": 02135418 067-11-9-10-81216 18 01514 -13 17 18
P :-1821354-0-1867 -11 -9 -10 -8 12 16 -0 —18 15 14 =13 17 -0
c : 111111 1 222 2 2 2 22 4 4 3 3 3 3 44

The components of genome A relative to genome B can be classified according to their bound-
ing elements. There are six direct components: (0,...,3) and (0, 6) are of type III, (3,...,18)
and (17, 18) are of type II, and (6,7) and (7, ..., 12) are of type I. The two remaining compo-
nents are reversed, the real component (—11,...,—8) of type V and the semi-real component
(-18,...,-13) of type VII.

5.2.1. Preprocessing

The input for the component identification algorithm is a string of length I, either P* or
P~, separated into an array of unsigned elements 7 = (mg,7;,...,7m-1) and an array of signs
oc=(00,01,...,01_1).

For each string P* and P~, two further arrays M and m are computed beforehand. The array
M is defined as follows: M[i] is the nearest unsigned element of & that precedes 7;, and is greater
than 7r;, and N + 1 if no such element exists, or if index i is a cap. Similarly, m[i] is the nearest
unsigned element of & that precedes nr; and is smaller than 7;, and O if no such element exists or
if index i is a cap.
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Like in the unichromosomal case [6], the arrays M and m can efficiently be computed using
two stacks M and M>, as shown for P* in Algorithm 1. For example, the arrays pi*, o*, M and

m of the string P* of Example 2 are given by:

r* 0 21 3 5418 0 6 711 910 8121618 0 15 14 13 17 18
ot + 4+ + ++ + 4+ + - - - — + + + + + + - ++
M :1818 21818 5 018 18 18 18 11 11 10 18 18 0 18 18 15 14 18 0
m 0001330006 779718120000 0130

The corresponding arrays for the other string P~ are computed analogously, and we get:

7~ 218213 5 4 0186 711 910 81216 018 1514 13170
o -+++ + + - -+ + - - - -+ + - -+ + - + -
M :18 33518 18 18 18 7 11 12 10 12 12 16 18 18 18 17 17 17 18 18
m 0100 40 0 00098 80O0O0O0O01413 000

Algorithm 1 (Preprocessing for P* = (n*, o), adapted from [6])

1: M, and M, are stacks of integers; initially M, contains N + 1 and M, contains 0

2: fori < 0,...,/—1do

32 M[i]«N+1
4: mli] <0
50 i+
6: while 7™ [i] # N+ 1do
(* Compute the entry M[i] *)
7: if 77[i — 1] > n*[i] then
8: push 7*[i — 1] on M,
9: else
10: pop from M, all entries that are smaller than 7*[i]
11: end if
12: M][i] « the top element of M,
(* Compute the entry m[i] *)
13: if 7t [i — 1] < 7*[i] then
14: push 7*[i — 1] on M,
15: else
16: pop from M, all entries that are larger than 7[i]
17: end if
18: mli] « the top element of M,
19: i++

20:  end while

21: Ml N+1
22: mli] <0

23: end for
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5.2.2. Component Identification

The component identification algorithm consists of two phases. In the first phase, we identify
the direct components of types I, III and IV and the reversed components of type VII by going
from left to right through string P*, and then, in the second phase, we compute the reversed
components of types V, VI and VIII and the direct components of type III by going from right to
left through string P~. Thus, in both phases, direct as well as reversed components are reported.

To find components in Phase 1 (or Phase 2), we systematically test for each index i from
0to!—-1 (or from [ — 1 to 0, respectively), whether there is a component with right bounding
element 7;, i.e. an interval of the form (7, ..., ;). Potential positive starting positions for direct
components are stored in a stack S| and negative starting positions for reversed components in a
stack S 5.

Four additional arrays are required for the component identification: Min and Max for direct
components, and min and max for reversed components. Concretely, if j is the top of stack S,
then Min[j] is the minimum and Max[j] is the maximum between j and the current index i. In
the same way, the arrays min and max are defined using the stack S,. Since direct and reversed
components are reported in both phases, all four arrays and both stacks S; and S, are updated in
both phases.

The component identification in Phase 1, shown as pseudocode in Algorithm 2, is as follows:
First, let us consider direct real components. Additionally to the three conditions described in [6],
we require that all elements of a component must be on the same chromosome in B. In line 12
of Algorithm 2, when a left bounding element s is tested, o is always positive because s is the
top of the stack S ;. Thus, (7, ..., ;) is a component of type I if and only if:

1. o is positive,

2. all elements between 7y and 71; in 7 are greater than g and smaller than 7;, the latter being
equivalent to the simple test M[i] = M[s],

3. ny # 0and Max[s] — Min[s] =i — s, and

4. all elements from s to i are on the same chromosome in B.

It should be mentioned that the third condition is equivalent, but slightly different to the one
given in [6]. For real components, we have that Max[s]— Min[s] = n; — ;. The reason for testing
Max[s] — Min[s] = i — s instead of testing m; — m; = i — s is that the latter one is not extendable
to semi-real components where one or both bounding elements are caps.

Now, we turn from real to semi-real components. Our strategy in Phase 1 is to report semi-
real components whose left bounding element is a cap. These are direct components of type III
and reversed components of type VII. Semi-real components whose right bounding element is a
cap will be reported in Phase 2.

First, let us consider components of type III. Compared to real components, two conditions
are modified: Since 7y = 0, all elements between 7, and n; are greater than g, simplifying the
second condition. The third condition is modified in two ways. First, the number of genes in the
interval is one less than for real components because the left bounding element is a cap. Second,
the minimum of the interval (s+1, ..., i), Min[s], must be a gene at the left end of a chromosome
in B. Bringing this together, the two conditions are replaced by:

(2) all elements between g and 7; in 7 are smaller than ;, which is equivalent to the simple
test M[i] = M[s],
(3) ny = 0and Max[s] — Min[s] =i— s — 1 and Min[s] is a left chromosome end in B.
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In line 13 of Algorithm 2, components of type I are reported together with components of type
IIT since their conditions are the same, except for the second and the third condition (see line 12).

The identification of components of type VII is similar to the one of type III. To switch from
direct to reversed components, we change the sign of o; and replace Max and Min by max and
min in the four conditions (see line 19). As a consequence, the following four conditions have to
be tested:

1. o is negative,

2. all elements between 7y and 7; in & are greater than 7r;, which is equivalent to the simple
test m[i] = m[s],

3. nny = 0 and max[s] —min[s] = i — s — 1 and max[s] is at a right chromosome end in B, and

4. all elements from s to i are on the same chromosome in B.

Finally, at the end of a chromosome, when n; = N + 1, semi-real components of type IV
whose bounding elements are both caps and have positive sign are identified. As long as we
have m; # 0O for the top element of stack S, we remove s (line 30) and update Min and Max
(line 31). Then, we test whether the whole chromosome is a semi-real component. In particular,
we have that 7, = 0 and 71; = N + 1. Obviously, all elements between 5 and 7r; are greater than
n; and smaller than 7;, making the second condition meaningless. Since both bounding elements
are caps, the number of genes is two less than for real components. Furthermore, there must
exist a chromosome in B of the form (o, Min[s], ..., Max[s], o). Altogether, we have to test the
following conditions in line 33:

1. 041 1S positive,

2. (not applicable)

3. Max[s]— Min[s] =i—s—2and Min[s] is at a left chromosome end in B and Max[s] is at
a right chromosome end of B,

4. all elements from s to i are on the same chromosome in B,

5. the component is not a chain of shorter components.

In Phase 2, we apply Algorithm 2 to string P~ instead of P*. By going backwards through
P~, we report the remaining components in the following order: First, the components of types
V and VI are found in the same way as the components of types I and III in Phase 1. Then, by
switching from reversed to direct, we identify all components of type II. Finally, at the end of
each chromosome, we test whether it is a component of type VIII.

5.2.3. Component Classification

Up to now, Algorithm 2 reports all components of genome A with respect to genome B, and
it remains to classify which of them are unoriented and which are not. For the classification of
components of types I-III and of types V-VII, it is sufficient to test whether all elements of the
component have the same sign. As shown in [6], this can be done by a slight modification of
Algorithm 2, without affecting the running time. The classification for the components of types
IV and VIII is more delicate and requires the computation of the paths and cycles that belong to
the component.

Recall that a component of type IV (or VIII) is unoriented if its elements are positive (respec-
tively negative) and its adjacency graph does not contain an even path. The idea is to mark in an
additional boolean array whether an adjacency belongs to an even path or not. This information
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Algorithm 2 (Phase 1: Find components of P* = (r, 7))

1: fori < 0,...,/do

2: S and S, are stacks of integers; initially S, contains i and S, contains i
3:  Min[i] « N, Max[i] « 0, min[i] < N, max[i] < 0
4 while 7[i] # N + 1 do
(* Update minima and maxima *)
5: Minli] « n[i], Min[top element of S ] « min(Min[top element of S ], 7[i])
6: Max[i] < n[i], Max[top element of S|] « max(Max[top element of S ], x[i])
7: update similarly min and max using stack S,
(* Find components of types I and III *)
8: while n[s] > n[i] or M[s] < n[i] do
9: pop the top element s from S,
10: update Min and Max as in line 5 and 6
11: end while
12: if o[i] = + and M[i] = M[s] and ((n[s] # 0 and Max[s] — Min[s] = i — s) or (n[s] = 0 and
Max[s]— Min[s] = i—s— 1 and Min|[s] is at a left chromosome end in B)) and all elements from
s to i are on the same chromosome in B then
13: report the component (7 . .. 7;)
14: end if
(* Find components of type VII *)
15: while (n[s] < n[i] or m[s] > x[i]) and n[s] > O do
16: pop the top element s from S,
17: update min and max as in line 7
18: end while
19: if o[i] = — and m[i] = m[s] and (7[s] = 0 and max[s] — min[s] = i — s — 1 and max[s] is at a
right chromosome end in B) and all elements from s to i are on the same chromosome in B then
20: report the component (7 . . . 7;)
21: end if
(* Update stacks *)
22: if o[i] = + then
23: pushion S,
24: else
25: pushion S,
26: end if
27: i++
28:  end while
(* Find components of type IV *)
29:  while 7[s] # 0 do
30: pop the top element s from S,
31: update Min and Max as in lines 5 and 6
32:  end while
33:  if o[s+ 1] = + and Max[s] — Min[s] =i — s — 2 and Min[s] is at a left chromosome end in B and
Max[s] is at the right chromosome end of B and all elements from s to i are on the same chromosome
in B and this chromosome is not a chain of shorter components then
34: report the component (7 . .. ;)
35:  endif
36: end for
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has been obtained in Step 2 of the overall algorithm. If a semi-real component (7, ... 7;) is re-
ported in line 34 of Algorithm 2, we test in constant time whether the two adjacencies (o, 4. 1)
and (m;_1, o) belong to an even path or not.

Summarizing, we have that:

Theorem 6. All components of two linear genomes on the set of genes {1, ..., N} can be found
and classified as oriented or unoriented with a modified version of Algorithm 2 in O(N) time and
space.

5.3. Tree Construction and Distance Computation

Now that we have an algorithm for the component identification, we can describe Steps 4 and
5 of the overall algorithm.

Given the components, we construct the tree T as follows: For each index i, 0 < i < [, at most
one component can start at position #, and at most one component can end at position i. Hence, it
is possible to create a data structure that tells, in constant time, if there is a component beginning
or ending at position i and, if so, reports such components. Given this data structure, it is a simple
procedure to construct the tree 7 in one left-to-right scan along the permutation. Initially one
round root node is created. Then, for each additional component, a new round node p is created
as the child of a new or an existing square node g, depending if p is the first component in a chain
or not. For details, see Algorithm 3.

Algorithm 3 (Construct 7 from the components of A with respect to B)

1: create a round node p, the root of T

2: fori—1,...,]1—-1do

3 if there is a component C starting at position i then
4 if there is no component ending at position i then
5: create a new square node g as a child of p

6 end if

7 create a new round node p (representing C) as a child of ¢
8:  else if there is a component ending at position i then
9 p < parent of ¢

10: q < parent of p

11:  endif

12: end for

Finally, we compute the extra cost. To generate tree 7’ from tree 7', a bottom-up traversal of
T recursively removes all dangling round leaves that represent oriented components, and square
nodes, including the root if it has degree 1. Given the tree 77, it is easy to compute the cover
cost: Perform a depth-first traversal of 7’ and count the number of leaves and the number of long
and short branches, including the root if it has degree 1. Then use the formulas from Theorems 4
and 5 to obtain ¢, and the formula from Theorem 3 to obtain the distance dgp.

Altogether we have:

Theorem 7. The HP distance dyp(A, B) of two genomes A and B on the set {1,...,N} can be
computed in linear time O(N).
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6. Conclusion

In this paper, we have given an alternative formula for the Hannenhalli-Pevzner genomic

distance equation. It requires only a few parameters that can efficiently be computed from the
genomes and from simple graph structures derived from the genomes. Traditionally used con-
cepts that were sometimes hard to access, like weak-fortresses-of-semi-real-knots, are bypassed.
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