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Abstract. The verification of complex mixed-signal systems is a chal-
lenge, especially considering the impact of parameter variations. Be-
sides the established approaches like Monte-Carlo or Corner-Case simu-
lation, a novel semi-symbolic approach emerged in recent years. In this
approach, parameter variations and tolerances are maintained as sym-
bolic ranges during numerical simulation runs by using affine arithmetic.
Maintaining parameter variations and tolerances in a symbolic way sig-
nificantly increases verification coverage. In the following we give a brief
introduction and an overview of research on semi-symbolic simulation
of both circuits and systems and discuss possible application for system
level verification and optimization.
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1 Introduction

Today’s embedded systems become more and more heterogeneous. Beside dig-
ital hardware parts performing signal processing operations and software tasks
running on dedicated processors, also analog components used for RF front ends
contribute to the system functionality. The fact that all these subsystems are
functionally interwoven requires an overall system verification. This is done usu-
ally by overall system simulation over long periods (e.g. seconds) of simulated
time in order to observe complex interactions. Two contradictory approaches are
taken in order to increase dependability of verification:

More accurate models: For dependable verification, accurate models at tran-
sistor level are mandatory. The demand for more accurate models has steadily
increased the number of considered device parameters in the last years [1].
Furthermore, increasing process variations required application of multi-run
simulations such as Monte Carlo and Worst Case methods. The approach to
increase dependability of verification by higher accuracy leads to simulation
times that are often within days for a single simulation run.
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More abstract models: For dependable verification, a high number of simu-
lation runs is required to achieve a high verification coverage. Considering
that a single simulation run of a complex embedded system requires at least
hours or even days, abstraction is mandatory to be able to simulate many
possible inputs.

In order to overcome the required tradeoff between accuracy and abstraction,
new approaches are required. In recent years, a new “semi-symbolic” approach
has evolved which wants to combine both accuracy and abstraction in a single
model. In the “semi-symbolic” approach, the accurate behavior (which would be
inefficient to simulate) is included into ranges of a more abstract model [2]. For
semi-symbolic simulation, the concept of Affine Arithmetic [3] is used.

w
w

w
.ic

t.t
uw

ie
n.

ac
.a

t

Institute of
Computer Technology

Dependable Verification: Modeling

 Doesn t model analog components accuratly in numerical
sense - but absolutely precise in formal sense!

 But what can we expect from simulation base on range-based
models?

6
C. Grimm: Towards more Dependable 
Verification of Mixed-Signal Systems

U

I

U

Alternative for
dependable
modeling:

Fig. 1. Detailed description

en
.a

c.
at

Dependable Verification: Modeling

w
.ic

t.t
uw

i

For accuracy: 100s of para
up to 50% parameter varia

p g

w
w

wp p

U

I
Simple models that guara
INCLUSION of accurate moAlternative for

dependable

U

dependable
modeling:

 Doesn´t model analog components accuratly in numerical
sense ‐ but absolutely precise in formal sense!sense  but absolutely precise in formal sense!

 But what can we expect from simulation based on range‐
based models? How can we use it for verification?

Institute of
Computer Technology

based models? How can we use it for verification? 

7
C. Grimm: Towards more Dependable 
Verification of Mixed-Signal Systems

Fig. 2. Abstracted range description

As a simple example for dependable and abstract modeling, Fig.1 shows a
commonly used (still simple) diode model. Accurate diode models are much
more complex, and, due to process variations, Monte Carlo and Worst Case
techniques must validate the overall application against impact of process varia-
tions. Nevertheless, for most applications the simple fact that a diode conducts
electric current in only one direction is fully sufficient for many applications.
Fig.2 describes this characteristic using ranges. Note, that the model is consid-
ered as abstract, but also accurate in the sense that it includes the real physical
behavior.

The fact that the real physical behavior is included (even considering worst
case parameter variations) allows getting an over-approximation of all possible
outputs (and reachable states). This enables a dependable verification of safety
properties: If simulation runs do not reach an insecure output or state, any model
included in the abstract, range-based model will also not do this. However, the
verification of lifeness properties (e.g. guarantee of reachability) is out of scope
in this approach.

2 State of the Art

The traditional approach to verification of mixed-signal system is to perform as
many simulation runs as possible to achieve a high coverage. In order to vali-
date the impact of parameter variations, similar input stimuli are applied with
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different parameter sets (multi-run simulations). The objective of Monte Carlo
simulation [4] is to reason about impact of parameter variances and distribution
functions of the system properties. In addition, corner cases are simulated to
identify potential worst case parameter sets. The number of parameters influ-
ences the number of necessary simulation runs exponentially in order to simulate
all corner values. Corner cases are not necessarily worst case parameters [5]. The
number of simulation runs can be reduced by statistical approaches such as ‘De-
sign of Experiments’ [6], [7] for finding worst case parameter sets, or ‘importance
sampling’ [8] for more accurate estimation of statistical properties.

Formal and symbolic methods [9], [10] for overall system verification are still
in early stages and not able to handle complexity and heterogeneity of today’s
embedded systems. The semi-symbolic approach [11], [12], [13], [14], [2] [15]
provides an interesting compromise between the efficiency and completeness of
formal methods with the usability of simulation based verifications. The com-
pleteness of verification does not hold in a full formal sense but can be shown for
the effects of the range modeled parameters and signals on the system at least
for verification of safety properties.

3 Semi-symbolic Modeling and Simulation

Many parameters in models of technical systems are subject to statistical de-
viations due to aging, process variations, or simply noise, for example. Such
parameters can be abstracted by using regions (or subspaces in case of multiple
dimensions) which include the varying parameter. In the following we show some
examples for modeling typical uncertainties or deviations by using ranges. For
formally describing ranges, we use symbols εi (range symbols) that represent
ranges [−1, 1].

Production tolerances: Analog implementations often have a static deviation ±e
from the ideal behavior. This can be modeled by adding a range with the radius
e to the ideal value:

tol(ŷ, e) = ŷ + εie

Quantization: Quantization of a continuous quantity can be modeled by adding
a range with a radius of a half quantization unit Q/2, which models the worst
case deviation:

quant(ŷ, Q) = ŷ + εj [n]Q/2

Truncation of numerical operations, such as multiplication can be handled in the
same way.

An interesting approach to perform a range based simulation of complex,
heterogeneous systems is the combination of Affine Arithmetic [3] with SystemC
AMS for modeling/simulation [14] at system level, and a numerical SPICE-
like environment for transistor-level simulations [16]: The SystemC AMS en-
vironment can easily be extended by using an Affine Arithmetic library, which
overloads certain computation related operations, introducing the semi-symbolic
methodology for modeling/simulation as described in [2].
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3.1 Affine Arithmetic

Affine Arithmetic extends the concept of Interval Arithmetic [17] with symbolic
range identifiers in order to overcome the problem of over-approximation. It
is also denoted as a semi-symbolic technique because it describes ranges by a
central value (that is a numerical value) and a sum of interval valued partial de-
viations and noise symbols (that represented in a symbolic way) [3]. The major
advantage is that maintaining corellation information in a symbolic way totally
avoids over-approximation for linear operations, and enables a number of differ-
ent techniques for defining linear inclusions for non-linear operations with very
limited over-approximation. Each affine expression represents the influence of in-
dependent sources of uncertainty by a sum of partial deviations xiεi. The noise
symbol εi represents the range [−1, 1] which is scaled by the deviation value xi.
Affine expressions are referred to by˜in the following.

x̃ = x0 +

length∑
i=1

xiεi εi ∈ [−1, 1] (1)

x̃± ỹ = (x0 ± y0) +

length∑
i=1

(xi ± yi)εi (2)

cx̃ = cx0 +

length∑
i=1

cxiεi (3)

Equation 1 gives the composition of an Affine Arithmetic symbol which is also re-
ferred to as Affine Arithmetic Form. The number i of partial deviations correlates
with the sources of uncertainty which affect this particular quantity. Equation 2
and 3, specify the so called affine operations which result in exact solutions. All
other operations can solely be solved by approximating the exact result, which
is performed by computing the approximation solution and adding an additional
xi+1εi+1 to enclose the remaining residual.

Thus, for nonlinear operations affine arithmetic provides (over-) approxima-
tions that always include the correct result but might be pessimistic, e.g.:

x̃ · ỹ := (x0 · y0) +

length∑
i=1

(x0yi + xiy0)εi

+ rad(x̃) · rad(ỹ)εm+1

where rad(x̃) is the radius of an affine variable x̃.

3.2 Semi-Symbolic System Level Simulation

The idea of semi-symbolic system level simulation is as follows [11]: In an existing
simulator, numerical operations are replaced by affine operations as sketched in
Section 3.1. This allows to model uncertainties, and to use the simulator e.g. for
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standard transient simulations. However, as simulation results we get the ideal
behavior of the system quantities described by the central values x0 and the
potential deviations modeled by the sum of all xi with i > 0.

The implementation is based on SystemC AMS [18]. In SystemC AMS the
behavior of blocks is specified by a C++ method called processing. This method
computes the outputs of the block depending on given inputs. Furthermore,
a C++ class library is used that provides the abstract data type AAF and
overloads the mathematical operations as described in Section 3.

The cental model of computation used in SystemC AMSs is Timed Syn-
chronous Dataflow (TDF) which is also used for the semi-symbolic simulation.
It is a timed version of the Synchronous Dataflow (SDF) which allows to deter-
mine a schedule of process executions before simulation. The fact that data flow
simulation does not requires solving equations that depend on stimuli makes it
well-suited for the semi-symbolic approach. Furthermore, the C++ based na-
ture of SystemC AMS allows easy integration of additional libraries, such as the
Affine Arithmetic library. This extensibility makes SystemC AMS to the best
choice for semi-symbolic simulations.

For a first proof of concept a control loop with uncertainties modeled by
symbolic terms at three positions [11] has been simulated as shown in Figure 3.
The simulation of this control loop has been carried out by using SystemC AMS
and an AAF class library with a step signal as input x(t).

Offset 

Error

Un-

precise 

Model

Quanti-

zation

Fig. 3. Block diagram of the control loop with PI controller

A semi-symbolic simulation provides a sequence of AAF samples ỹ[nT ] de-
scribing the ideal transient simulation result y0[nT ], and the potential contribu-
tion of all uncertainties by the values yi[nT ]. In ỹ the εi are still symbols. From
this symbolic representation the particular output signals are given by assigning
the symbols εi real values. Figure 4 shows areas containing the step response of
the control loop example.
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Fig. 4. Graphical representation of potential output signals

With different, both linear and nonlinear system models following observa-
tions have been made [14], [2]:

1. For systems containing only affine operations, the output signals are com-
puted accurately. There is no over-approximation, and the number of noise
symbols remains constant.

2. For nonlinear systems, there is an over-approximation that is handled accu-
rately by new noise terms. The over-approximation depends on the kind of
nonlinearity. Mild nonlinearities usually lead to quite small over-approximations.
Non-contiguous functions such as a comparator cannot be handled in a rea-
sonable way.

The fact that each nonlinear operation increases the number of noise terms –
and thereby also simulation time – might be a problem. To overcome this a kind
of garbage collection [2] has been added that collects the smallest terms and
replaces them by new noise terms.

3.3 Semi-Symbolic Circuit Simulation

While today’s digital systems are commonly modeled on higher abstraction levels
through abstracted languages like Verilog, VHDL or SystemC, analog systems
are still often designed by hand on transistor level. Even if analog circuits have
been simulated on system level using SystemC AMS, a verification step on lower
levels is often desired to verify the behavior. Therefore, a semi-symbolic circuit
simulator has been developed recently [19], [12] which allows the analysis of a
deviated system model even on lower levels. Compared with data flow simulation,
circuit simulation requires to set up a system of (semi-symbolic) equations, and
to solve it using numerical methods.

Affine circuit simulation is divided into two parts. At first a netlist of a given
circuit with the corresponding device models is transformed into a mathematical
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representation by the Modified-Node-Analysis (MNA). MNA converts the netlist
to the according system of differential and algebraic equations (Equation. 4).

F (x(t), ẋ(t), p(t), t) = 0 (4)

x(t) is the vector of time dependent variables and p(t) describes the circuit pa-
rameters. In [19], [12], MNA is performed using Maple. The intermediate result
is a complete symbolic equation system. Following, all static parameters are ap-
plied and the resulting semi-symbolic system is calculated. In the second step
the semi-symbolic equation system is passed to a numerical equation solver (im-
plemented in C++), which performs DC, AC [20] and Transient-Analysis [16].
Equations are solved by applying numerical integration with either forward,
backward Euler or trapezoidal methods.

The numerical computation of the outputs from the states and input quan-
tities (solving of the non-linear DAE) follow the well known solving strategies
of linearization and discretization in the current solution point. In order to han-
dle affine arithmetic forms instead of real values, the simulation kernel uses the
following method:

1. Compute x0 by existing Newton-Raphson iteration.
2. Compute xiεi by sensitivity analysis in each ASP using a solver.
3. Compute NLεi+1 by numerical algorithm that minimizes over approxima-

tion, but includes potential error due to numerical integration.

In the third item an additional NLεi+1 range is introduced which holds the
numerical solving errors and together with the previous solution gives the formal
solution to the circuit simulation. As every calculation introduces a new error
approximation term, the number of ranges increases steadily in time and therefor
a garbage collection process is activated at certain times. This garbage collection
summarizes ranges which are already heavily attenuated and in this way reduces
the number of ranges considerably.

Fig.5 and Fig.6 show schematics of a bandpass filter and its OpAmp transistor
level structure, respectively. This system is used to demonstrate the applicability
of the above procedure. The W/L parameters are considered to be deviating, the
remaining parameters are constant. A Monte Carlo simulation was additionally
carried out to compare the resulting range to the simulation based approach.

Fig.7 and Fig.8 show a step response with 5% correlated and uncorrelated
W/L deviations. The solid line represents the Affine Arithmetic ranges whereas
the dotted lines show the Monte Carlo results which reside inside the calculated
range.

4 Advanced Analysis Techniques

In the first approaches, the analysis of semi-symbolic simulations concentrated
on transient simulations and simulation interpretations in the time domain. How-
ever, most properties of signal processing systems are specified in the frequency
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Fig. 5. Active Bandpass Filter
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Fig. 7. Correlated W/L
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Fig. 8. Uncorrelated W/L

domain. Therfore, first steps have been taken to broaden the analysis capabili-
ties of range based methodologies towards the frequency domain. The Discrete
Fourier Transform (DFT) has been adapted to allow a transformation from range
based signal representations in time domain to its frequency domain counterpart
[21]. The linear nature of the DFT is used to divide the transformation into the
transformation of the central value and the contribution of the range on the
spectrum. Equation 5 shows the mathematical representation of such a range
based DFT with k = 0, . . . , N − 1:

F̃ [k] =

N−1∑
n=0

x0[n]e−j 2πk
N n + ε1

N−1∑
n=0

x1[n]e−j 2πk
N n (5)

To demonstrate the applicability of this transformation operation, a mixer
circuit example has been chosen and is simulated with added abstract deviations
to the mixing operation. The mixer model on the system level is reduced to a
simple algebraic multiplication of its input signals. For simplification we chose
sine shaped input quantities and added a low pass filter for damping the un-
wanted upper sideband for our demonstration. This example illustrates a down
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conversion in a communication receiver. Therefore only the lower sideband is of
relevance.

V
o

u
t

Deviation

LP

Fig. 9. Mixer with deviations on system level

In order to enhance the system model to additionally include a range, we
added a block called ‘Deviation’ to the model description. We chose to add a
dynamic partial deviation to reflect a steadily uncertain mixing property. For
simplification, the deviation quantity is kept constant but could be identically
implemented as a function of certain model parameters. The resulting (semi-
symbolic) output of semi-symbolic simulation is finally transformed into the
frequency domain by applying the Discrete Fourier Transform on the range based
output quantity Vout.

frequency domain by applying the Discrete Fourier Transform
on the range based output quantityVout.
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The resulting frequency spectrum shown in Fig. 2 gives the
spectral components remaining in the system model output
signal. The spectrum does not only provide the frequency
behavior of the nominal system model but it also delivers
an envelope which forms the boundaries of the range defined
system behavior.

Fig. 3. Simulated transistor level mixer circuit

The second example circuit is a mixer as shown in Fig. 3,
which is often used as a frequency selection stage in com-
munication receivers. The circuit was built on transistor-level
from an inverting adder as input stage, a diode as non-linearity,
followed by a buffer stage and a passive bandpass filter. The
parameters had tolerances of 1 % to 10 % including width and
length of the transistors as well as the resistors, capacitors and
inductors. These tolerances were expressed directly during the
modeling process as deviations of the parameters using affine
symbols, e.g.R1 = 10 kΩ + 1 kΩ ⋅ �R1. The result of the
transient simulation was used as input for the range based
FFT. In order to avoid deviations through the settling time of
the mixer’s output filter the simulation runtime was chosen to
be 1 ms, which holds 1000 cycles of the slowest input signal.
Only the last 0.1 ms of the resulting output signal have been
used as input for the FFT, which is plotted in Fig. 4.
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Fig. 4. Amplitude spectrum of mixer output on transistor level

the transformed affine output signal. The input frequenciesof
1 MHz and 1.1 MHz are well suppressed, resulting in a high
amplitude of the down sampled 100 kHz signal. As low-level
simulation includes solving a highly non-linear differential
equation system, many new deviation symbols are generated
during runtime. Each call of a non-linear arithmetic function
creates one new deviation symbol. This causes generation of
about one million symbols in total. Because at each time
step new deviations are generated, these uncorrelated symbols
create frequencies throughout the whole spectrum. This again
results in a high FFT-noise, which is shown in Fig. 4.

While the DFT and FFT are completely linear Operations,
the illustration of the result may not. Using a represen-
tation in the complex plane plots the output of the FFT
directly, not introducing any further approximation. But it is
not very commonly used. The most common representation
through magnitude and phase introduces further non-linear
functions. Especially the magnitude, which calculated through√
re2 + im2, shows a issue in the range expression. Using

Affine Arithmetics, it cannot be guaranteed, thatre2 + im2

is always positive, which means that the square root may not
be computable. To avoid this, at first the complex values are
converted back to their interval expressions. In this expression
the absolute value is calculated. If both bounds are greateror
smaller than zero, the new bounds are their absolute values.
If one bound is greater than zero while the other is smaller
than zero, the lower bound is zero and the upper bound is
the greatest absolute value. The magnitude is then calculated
using the new intervals.

The simulation was conducted on a 16-core AMD Opteron
system with 2.8 GHz and 32 GB RAM. The verification of the
simulation results as well as of the FFT has been conducted
through a nominal simulation using 1000 Monte-Carlo sam-
ples. The runtime of the affine simulation and FFT required
14:59 minutes compared to 549:14 minutes for the Monte-

Fig. 10. Spectrum of the output signal
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The resulting frequency spectrum shown in Fig. 10 gives the spectral com-
ponents remaining in the output signal. The spectrum does not only provide the
frequency behavior of the nominal system model – it also delivers an envelope
which forms the boundaries of the range defined system behavior.

5 System Optimization with Semi-Symbolic Simulation
(MARC)

A semi-symbolic simulation provides the major advantage that the different
ranges, which contribute to the system output are labeled by symbolic identifiers.
Thereby, a back tracing of all (possible) deviations to their cause is permanently
possible, because the composition of the contributions to the deviation is main-
tained symbolically in the partial deviations and noise symbols (xiεi). Such a
back tracing allows us a sensitivity analysis even in presence of DSP operations.
Therefore, the system output can be analyzed for the influencing parameters.

System Analysis
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Fig. 11. System optimization within the MARC framework
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Fig. 11 shows a system design flow, which uses a semi-symbolic simulation to
identify parameter deviations that negatively influence the overall system behav-
ior. First, the system is modeled using the previously described semi-symbolic
approach. Deviations of parameters and uncertainties are translated into range
descriptions. After that, the model together with its ranges is simulated by ap-
plying input stimuli that may also include ranges. Then, the output behavior
is analyzed using various system analysis methodologies and finally the most
disturbing range sources are refined for improving the system performance.

6 Conclusion, Future Work

Semi-symbolic simulations are capable of determining the worst-case behavior
of systems with varying parameters in just one simulation run. The parameter
variations are modeled with ranges by using Affine Arithmetic. This range based
system model is following simulated performing a transient analysis. The result
of such a system simulation provides a signal range which indicates a pessimistic
bound for the set of possible output signals, caused by the parameter deviations.
Compared to traditional Monte-Carlo and Corner-Case simulations the verifica-
tion effort can be reduced significantly. A semi-symbolic simulation is currently
applicable on transistor level as well as on system level. First steps to enhance
the analysis possibilities has been carried out by introducing the Discrete Fourier
Transform for range based signals. Further enhancements to increase the usabil-
ity for industrial projects are considered and will be integrated into the MARC
framework in the future.

Although the semi-symbolic techniques have been developed with a back-
ground of simulation-based verification, there is also an interesting path towards
more formal verification: Formal verification of hybrid systems usually requires
symbolic simulation and a representation of sets of possible states, usually us-
ing subspaces. The comparison of techniques used for formal verfication and for
semi-symbolic simulation using affine arithmetic is a promising field for future
work.
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