
A mathematical approach towards hardware
design

Gerard J.M. Smit, Jan Kuper, Christiaan P.R. Baaij

University of Twente, Enschede, The Netherlands,
G.J.M.Smit@ewi.utwente.nl

Abstract. The inadequacies of traditional design practices for embedded
systems have led to a myriad proposals as to improve the state of the art
and raise the abstraction level. Almost all of these proposals still start
with an imperative “C”-like basis, even though the original mathematical
specification has completely different semantics. We show a design process
based on a functional language, staying in the same semantic domain as
the mathematical specification. Meaning-preserving transformations on
these functional description then lead to an optimized parallel design.

Keywords: Hardware Design, Functional Languages

1 What is wrong with hardware design today

Hardware description languages and design practices have not allowed the pro-
ductivity of hardware engineers to keep pace with the development of chip
technology. Systems described in traditional design languages such as VHDL
are rather low level, which is highly cumbersome and may lead to design faults
in large real-life applications. The problem with traditional design practices,
especially in the (streaming) digital signal processing domain, is that semantic
domains are changed twice, almost guaranteeing excessive amounts of verification.
The algorithms for signal processing are often written down as a mathematical
specification. When turning such an algorithm into a streaming application (on
hardware) the traditional approach is to first translate the specification to sequen-
tial “C”-like code. As the semantics of the “C”-code do not match the original
mathematical specification, extensive testing and verification has to be performed;
often requiring the effort of multiple persons. Once verified, this “C”-code is then
manually translated by another group of people to (parallel) RTL-style VHDL
code. As the semantics of the VHDL and “C”-code do not match, the translation
is cumbersome and potentially leads to design faults. As a result excessive and
time-consuming verification is once again required.

2 Functional, transformational design

Our approach does not suffer from the faults incurred by the semantic domain
crossing of the traditional approaches: we straightforwardly convert the original

Dagstuhl Seminar Proceedings 10281
Dynamically Reconfigurable Architectures
http://drops.dagstuhl.de/opus/volltexte/2010/2840

1

mathematical specification to a program written in the functional programming
language Haskell [8]. The translation is straightforward as the semantics of the
mathematical specification and Haskell match. As functions only specify true
data-dependencies, full parallelism remains exposed (as opposed to “C”). The
next step is to find some adequate (meaning-preserving) transformations on the
specification, in particular to find specific optimizations. These transformations
are written in a mathematical format, allowing us to prove the correctness of
these transformations.

Next, the resulting Haskell specification is given to a compiler, called CλaSH1

[3,9], that translates2 the specification into VHDL. The resulting VHDL is
synthesizable, so from there on standard VHDL-tooling can be used for synthesis.
We remark that the choice for VHDL is of a practical nature and motivated by
the availability of synthesis tools for VHDL.

Specifications written in Haskell are clear and concise. Furthermore, it is
possible to use powerful abstraction mechanisms (which are not available in VHDL,
or C) such as polymorphism, higher-order functions, pattern matching and partial
application. These features allow a designer to describe (parameterizable) designs
in a more natural and concise way than possible in traditional languages.

3 Functions and Hardware

Two basic elements of a functional program are functions and function application.
These have a single obvious translation to a netlist format: 1. every function
is translated to a component, 2. every function argument is translated to an
input port, 3. the result value of a function is translated to an output port, and
4. function applications are translated to component instantiations. The result
value can have a composite type (such as a tuple), so the fact that a function
has just a single result value does not pose any limitation. The actual arguments
of a function application are assigned to signals, which are then mapped to the
corresponding input ports of the component. The output port of the function
is also mapped to a signal, which is used as the result of the application itself.
Since every function generates its own component, the hierarchy of function calls
is reflected in the final netlist.

The short example below (1) gives a demonstration of the conciseness that can
be achieved with CλaSH when compared to other (more traditional) HDLs. The
example is a combinational multiply-accumulate circuit that works completely
polymorphic, i.e., the type of the variables is not yet specified. The corresponding
netlist is depicted in Figure 1.

mac x y acc = add (mul x y) acc (1)

1 CλaSH: CAES Language for Synchronous Hardware
2 As the CλaSH compiler is still a prototype, only a subset of Haskell is supported,

meaning the specification might need some modifications.

2

mac

mul

add

x

y

acc

Fig. 1. Combinational Multiply-Accumulate

Thus, the function mac has three arguments x, y, and acc. The result is
calculated by first applying the function mul to x and y, and then applying the
function add to the result of the multiplication and acc.

Since (most likely) mul and add are numerical functions, the parameters are
restricted to numbers, though the exact number type is still unspecified. We can
create a concrete/monomorphic instance of this multiply-accumulate circuit by
making a new function that is annotated with a concrete type (2), the inferred
hardware of which is shown in Figure 2:

type Word = Signed D16

mac16 :: Word -> Word -> Word -> Word

mac16 = mac

(2)

mac16

mac

Fig. 2. 16-bit signed integer Combinational Multiply-Accumulate

Here, the type Word is defined as an alias for the type Signed D16, which
indicates a signed integer type of 16 bits wide. The input of the function mac16

now consists of three values of the type Word (the first three occurrences of “Word”
in the type of mac16), and the result of mac16 (the last occurrence of “Word” in
that type expression) also is of type Word.

We could already have annotated the original mac-function with a concrete
type, but defining a new function allows reuse of mac for a different number
types and bit-widths. Notice that the inputs of the mac16 function are implicitly
passed to the mac function (i.e. an implicit port mapping).

To work with the concept of state in a hardware description, we make the
current state an extra argument of the hardware description function, and the
updated state an extra part of the result of that function. Such a function thus
resembles the well known Mealy-machine. To indicate which argument of the
function denotes the state we annotate it with the State keyword. In hardware
these state arguments are assumed to come from registers, whereas the state part
of the result of a function is put into registers. As an example we return to the
multiply-accumulate circuit, and store the accumulator in a register as shown in

3

Figure 3. The value in this register is represented by the parameter State s in
definition (3), whereas the updated content of the register is represented by the
output State s’ :

macS (State s) (x,y) = (State s’,s’)

where

s’ = mac16 x y s

(3)

macS

mac16
s’

x
y

s

Fig. 3. 16-bit signed integer Multiply-Accumulate, with state

4 Example: FIR-filter

As an example of our transformational design method, we make a simple FIR-filter.
The mathematical specification of a FIR-filter is:

yt =
∑n−1

i=0
xt−i · hi (4)

In other words, the FIR-filter takes the vector dot-product of the coefficients
h and an equally long vector of consecutive samples of the stream x.

4.1 Ubiquitous functions

Before we translate the mathematical specification into Haskell, we will first
elaborate on three ubiquitous functions in the functional programming world:
map, zipWith, and fold.

Map The map function applies a function f on every element in a list xs, e.g.

map square [1,2,3] = [1,4,9]

In general, given a function f from type a to type b and a list xs of elements of
type a, the expression

map f xs

will result in a list of values of type b. That is to say, the type of map is:

map :: (a -> b) -> [a] -> [b]

The respective netlist interpretation of the map function is depicted in Figure 4.

4

f

x0

f

x1

f

x2

f

x3

f

x4

f

x5

f

x6

f

x7

f(x0)

Fig. 4. Netlist interpretation of the map function

ZipWith Likewise, the zipWith function applies a binary function f pairwise
on the elements of two lists, xs and ys, e.g.:

zipWith add [1,2,3] [4,5,6] = [5,7,9]

Thus, given a function from a and b to c and two lists of a’s and b’s,

zipWith f xs ys

will result in a list of c’s. The type of zipWith is:

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

The netlist interpretation of the zipWith function is shown in Figure 5.

f

x0

f

x1

f

x2

f

x3

f

x4

f

x5

f

x6

f

x7y0 y1 y2 y3 y4 y5 y6 y7

f(x0,y0)

Fig. 5. Netlist interpretation of the zipWith function

Fold Finally, the fold function applies a binary function f on the elements of
the list xs to reduce it to a single value, using the value z to start the reduction,
e.g. (using “+” for add):

fold (+) 0 [1,2,3] = 6

Thus, given a function f from a and b to a, a start value of type a, and a list of
b’s,

fold f z xs

will return a value of type a. The type of fold is:

fold :: (a -> b -> a) -> a -> [b] -> a

The respective netlist interpretation of the fold function is depicted in Figure 6.

5

f

x0

f

x1

f

x2

f

x3

f

x4

f

x5

f

x6

f

x7

z

Fig. 6. Netlist interpretation of the fold function

4.2 Design

Returning to the example of the FIR-filter, we can now straightforwardly define
the dot-product of two vectors by using two of the above functions, fold and
zipWith:

dotp xs hs = fold (+) 0 (zipWith (*) xs hs) (5)

That is to say, the x-values are pairwise multiplied with the h-values, and
the resulting values are added, starting with the value 0.

There is one aspect that has to be added to this definition to transform it
from a dot-product to a FIR-filter: to keep a state; i.e., to update the contents of
the x-registers and h-registers. To do so we add State keywords to the function
definition:

fir (State (xs,hs)) x = (State (x : init xs, hs), y)

where

y = fold (+) 0 (zipWith (*) xs hs)

(6)

As can be seen in this definition, the state consists of two parts: the list xs
(i.e., the x-registers) and the list hs (i.e., the h-registers). The new contents of
the x-part of the state is the new input x in front of the init-part of the previous
contents xs, where the init-part of a list is the whole list except the last element.
Effectively this means that the new input x is put into the first register, whereas
the previous contents is shifted one position to the right. As before with the
multiply-accumulate examples, when instantiated for vectors of length four, this
definition immediately corresponds to the architecture in Figure 7.

Note that in definition (6) the h-part of the state remains unchanged. This
offers the possibility to extract the h-parameters of the FIR-filter from the
description of the hardware architecture and to consider them as parameters
for the “pattern” of a FIR-filter in general. Consider the following alternative
definition:

fir’ hs (State xs) x = (State (x : init xs), y)

where

y = dotp xs hs

(7)

Here, fir’ is a function that yields a FIR-filter for every sequence of coefficients
hs. Such a FIR-filter can be denoted by fir’ hs for a given sequence hs.

6

fir4

xt−1 xt−2 xt−3 xt−4

h0 h1 h2 h3

∗ ∗ ∗ ∗

+ + + +0

x

y

Fig. 7. Four-taps FIR-filter

5 Simulation

An advantage of our approach is that every architecture specification can be
simulated immediately by a Haskell interpreter using the following function:

simulate f (State s) (x:xs) = y : simulate f (State s’) xs

where

(State s’, y) = f (State s) x

(8)

In this definition x:xs is a sequence of inputs, of which x is the first input,
and xs the remaining sequence of inputs. Thus, the function simulate takes the
first input x and the present state State s and applies a given architecture f to
them (in the where clause). Next, the function simulate outputs the value y and
continues with the new state State s’ and the remaining sequence of inputs xs’.

Given the above examples, the following expressions represent simulations of
the according architectures:

simulate macS (State 0) [(1,1), (2,2), (3,3)]

simulate fir (State (zeroes,hs)) inputs

simulate (fir’ hs) (State zeroes) inputs

(9)

In the above it is assumed that zeroes is a list of zeroes of adequate length,
hs is a given sequence of coefficients, and inputs is a given sequence of input
numbers. Note that the function simulate is polymorphic and works for any
architecture.

6 Parallelization

Automatic parallelization of given C-code is an extensive topic of research.
However, as yet there is no method that is able to split any given C-program
in parallel threads, all methods presuppose severe restrictions on the given

7

program [4,15]. When starting from a mathematical specification, or, as indicated
above, from an equivalent Haskell specification, the situation is different. First
of all, a functional specification is inherently parallel since such a specification
is function based and not statement based. That means that it is possible to
check a given program for specific mathematical properties in order to apply
transformational rules to parallelize a given piece of code. For example, consider
the following specification of the fold function (op is a binary operation, a is the
starting value, and xs is a list of values):

fold op a xs (10)

As seen above, this expression reduces the list xs by applying the operation
op, and starting from the value a. Clearly, when op is associative, and a is the
unit element of op, then one may split the list xs in sub-lists, reduce each sublist
separately and reduce the list of results. This leads to the following transformation
rule:

Suppose xss is a list of lists which together form the list xs, i.e., the concate-
nation of all elements of xss forms xs. Then we have the following equality (see
also Figure 8):

fold op a xss = fold op a (map (fold op a) xss) (11)

+

1

+

2

+

3

+

4

+

5

+

6

+

7

+

8

0 36

+

1

+

2

+

3

+

4

+

5

+

6

+

7

+

8

0

36+ + + +0

0 0 0

3 7 11 15

fold (+) 0 [1,2,3,4,5,6,7,8]

fold (+) 0 (map (fold (+) 0) [[1,2],[3,4],[5,6],[7,8]])

Fig. 8. Equivalence of fold and fold-map-fold

Note that the obligation of a designer is a well isolated proof obligation: prove
that op is associative, and that a is the unit element of op. In a similar way, but
using a different transformation, we show that is also possible to split up e.g. a
FIR-filter:

8

fir’’ (us,(x,z)) (hs,xs) = (us ++ (x : init xs), (last xs, y))

where

y = fold (+) z (zipWith (*) xs hs)

firSplit n hs xs x = fold fir’’ ([],(x,0)) xs

where

xs = zip (split n hs) (split n xs)

(12)

We apply a structural transformation (of which the details are beyond the
scope of this text) to the original fir -filter, to give it an extra input and output
for the purpose of connecting it to other FIR-filters. We can then fold this new
fir” function over a list of tuples (containing the n-way split coefficients and
previous x values), resulting in the firSplit function.

The netlist interpretation of 4-way split 16-taps instantiation of the above
FIR-Filter description is depicted in Figure 9.

∗ ∗ ∗ ∗

+ + + +0

∗ ∗ ∗ ∗

+ + + +

∗ ∗ ∗ ∗

+ + + +

∗ ∗ ∗ ∗

+ + + +

Fig. 9. 16-taps FIR-filter: four times four-taps FIR-filter

7 Related Work

In an attempt to raise the abstraction level of hardware descriptions, a great
number of approaches based on functional languages have been proposed in the
past [2,5,6,7,10,11,13,14]. The idea of using functional languages for hardware
descriptions actually started in the early 1980s [6,14], a time which also saw the
birth of VHDL. In an attempt to reduce the effort involved with prototyping a new
language, such as creating all the required tooling like parsers and type-checkers,
many functional HDLs [2,5,7,11] are embedded as a domain specific language
(DSL) within the functional language Haskell. The CλaSH system differentiates
itself from these embedded DSLs by using (a subset of) the Haskell language
itself for the purpose of describing hardware.

Bluespec [12] is a high-level synthesis language that features guarded atomic
transactions and allows for the automated derivation of control structures based
on these atomic transactions. Bluespec, like CλaSH, supports polymorphic typing
and function-valued arguments. Bluespec’s syntax and language features had their
basis in Haskell. However, in order to appeal to the users of the traditional HDLs,
Bluespec has adapted imperative features and a syntax that resembles Verilog.
As a result, Bluespec is (unnecessarily) verbose when compared to CλaSH.

9

The merits of polymorphic typing and function-valued arguments are now
also recognized in the traditional HDLs, exemplified by the new VHDL-2008
standard [1]. VHDL-2008 support for generics has been extended to types and
subprograms, allowing a designer to describe components with polymorphic
ports and function-valued arguments. Note that the types and subprograms
still require an explicit generic map, while the CλaSH compiler automatically
infers types, and automatically propagates function-valued arguments. There are
also no (generally available) VHDL synthesis tools that currently support the
VHDL-2008 standard.

8 Concluding remarks

In the above we showed that Haskell is an adequate language to specify hardware
and that it is close to an original mathematical specification. We also indicated
that it is well possible to have transformational rules to derive a final architecture
from a given specification.

The current state of the research of our team is that several non-trivial
examples are specified using Haskell and translated into synthesizable VHDL using
CλaSH. These examples include a floating point reduction circuit with a pipelined
addition component, and a dataflow processor. Currently, we are investigating the
aspects of a comparison between Haskell and traditional hardware specification
languages such as VHDL and SystemC. Further issues are the definition of the
exact subset of Haskell that can be synthesized to hardware, extending the system
CλaSH with a graphical visualization of a specified architecture, and formalizing
the internal rewrite mechanism.

References

1. VHDL Language Reference Manual (2008)
2. Axelsson, E., Claessen, K., Sheeran, M.: Wired: Wire-Aware Circuit Design. In:

Proceedings of Conference on Correct Hardware Design and Verification Methods
(CHARME). Lecture Notes in Computer Science, vol. 3725, pp. 5–19. Springer
Verlag (2005)

3. Baaij, C., Kooijman, M., Kuper, J., Boeijink, A., Gerards, M.: CλaSH: Structural
Descriptions of Synchronous Hardware using Haskell. In: Proceedings of the 13th
EUROMICRO Conference on Digital System Design: Architectures, Methods and
Tools, Nice, France. pp. 714–721. IEEE Computer Society Press, Los Alamitos,
USA (September 2010)

4. Bijlsma, T., Bekooij, M.J.G., Jansen, P.G., Smit, G.J.M.: Communication between
nested loop programs via circular buffers in an embedded multiprocessor system.
In: Falk, H. (ed.) Proceedings of the 11th international workshop on Software &
compilers for embedded systems (SCOPES), Munich, Germany. ACM International
Conference Proceeding Series, vol. 296, pp. 33–42. ACM Press, New York (March
2008)

5. Bjesse, P., Claessen, K., Sheeran, M., Singh, S.: Lava: hardware design in Haskell.
In: ICFP ’98: Proceedings of the third ACM SIGPLAN international conference on
Functional programming. pp. 174–184. ACM, New York, NY, USA (1998)

10

6. Cardelli, L., Plotkin, G.: An Algebraic Approach to VLSI Design. In: Proceedings
of the VLSI 81 International Conference. pp. 173–182 (1981)

7. Gill, A., Bull, T., Kimmell, G., Perrins, E., Komp, E., Werling, B.: Introducing
kansas lava. In: 21st International Symposium on Implementation and Application
of Functional Languages. LNCS 6041 (November 2009)

8. Jones, S.P. (ed.): Haskell 98 language and libraries, Journal of Functional Program-
ming, vol. 13 (2003)

9. Kuper, J., Baaij, C., Kooijman, M., Gerards, M.: Exercises in architecture spec-
ification using CλaSH. In: Proceedings of the Forum of Specification & Design
Languages 2010: FDL 2010, Southampton, United Kindgom (September 2010)

10. Li, Y., Leeser, M.: HML, a novel hardware description language and its translation
to VHDL. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on
8(1), 1–8 (Feb 2000)

11. Matthews, J., Cook, B., Launchbury, J.: Microprocessor specification in Hawk. In:
Proceedings of 1998 International Conference on Computer Languages. pp. 90–101
(May 1998)

12. Nikhil, R.S.: Bluespec: A General-Purpose Approach to High-Level Synthesis Based
on Parallel Atomic Transactions. In: Philippe Coussy and Adam Morawiec (ed.)
High-Level Synthesis - From Algorithm to Digital Circuit, pp. 129–146. Springer
Netherlands (2008)

13. Sander, I., Jantsch, A.: System Modeling and Transformational Design Refinement
in ForSyDe. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 23(1), 17–32 (January 2004)

14. Sheeran, M.: µFP, a language for VLSI design. In: LFP ’84: Proceedings of the
1984 ACM Symposium on LISP and functional programming. pp. 104–112. ACM,
New York, NY, USA (1984)

15. Verdoolaege, S., Nikolov, H., Stefanov, T.: pn: A Tool for Improved Derivation
of Process Networks. EURASIP Journal on Embedded Systems 2007 (Article ID
75947)

11

	A mathematical approach towards hardware design

