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Abstract. We present a series of examples that illuminate an important
aspect of the semantics of higher-order functions with local state. Namely
that certain behaviour of such functions can only be observed by pro-
viding them with arguments that contain the functions themselves. This
provides evidence for the necessity of complex conditions for functions
in modern semantics for state, such as logical relations and Kripke-like
bisimulations, where related functions are applied to related arguments
(that may contain the functions). It also suggests that simpler semantics,
such as those based on applicative bisimulations where functions are ap-
plied to identical arguments, would not scale to higher-order languages
with local state.
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1 Introduction

Some of the latest relational semantics of higher-order languages with local state,
based on bisimulations [25,26,22,4,10,11,12] and logical relations [3,6,2,18,5], ex-
amine the behaviour of related functions by applying them to arguments drawn
by the relation itself, or by an appropriate compatible closure of it. This im-
poses a seemingly strong obligation in proofs of equivalence of such functions,
compared to the proof obligation of applicative bisimulation [1,7,27] where only
identical arguments need to be considered. The method of open bisimulation
(also known as normal form bisimulation) has also been shown useful for rea-
soning about state [20,14,15,13,8,24].

A relational semantics of a higher-order lambda-calculus with general store
based on Kripke-like bisimulations [11] is the largest set of worlds (s, s′, R) that
satisfy a set of conditions, each composed by a relation R on terms and stores
s and s′ under which the relation holds. The relation encodes the related values
(most notably locations) known to the context. An example of the conditions
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of this semantics is that (s, s′, R) can be in the semantics only if updates to
locations in the knowledge R leads to a world also in the semantics.

The Kripke-like bisimulation conditions that are most relevant to applicative
bisimulation involves applications of related functions. To prove that a world
(s, s′, R) which relates two abstractions F and G is in the semantics, we need to
show, among other conditions, that for all arguments in the compatible closure
of R (i.e. for all C[v] and C[v′] with (v, v′) ∈ R), when the application (F C[v])
under s evaluates to a value w and store t, then the application (GC[v′]) under
s′ evaluates to some value w′ and store t′, and (t, t′, Q) is an appropriate world
in the semantics, in which the values w and w′ are related. We also need to prove
a similar condition for when (GC[v′]) under s′ evaluates to w′ and t′.1

Applicative bisimulations [1], however, only require that functions have a
related behaviour when applied to the same arguments. They provide an elegant,
sound and complete, relational semantics of pure higher-order languages [1,7].
The question, which we answer in the negative in this report, is whether a sound
applicative bisimulation semantics can be given as well to higher-order languages
with local state.2

Mason and Talcott, when they studied a relational theory for a call-by-value
lambda calculus with general references [17, Section 7], wrote:

[Applicative] bisimulation provides an alternative approach to equiva-
lence and deserves consideration in computation systems that permit
effects other than non-termination. The definition of bisimulation rela-
tion assumes that extensionality is consistent. Since the presence [of]
memory effects makes this no longer true, the basic definition would re-
quire some modification in order to extend the methods of Abramsky
and Howe to the computational language presented in this paper. We
plan to investigate this approach.

Although Mason and Talcott have recognised that extensionality does not hold
for languages with effects—and therefore applicative bisimulation as defined for
pure languages is not sound in the presence of effects—the counterexamples they
give [17, Section 3] involve terms that can be distinguished by contexts that
update memory accessed by the terms. These contexts, however, are already
captured in Kripke-like semantics by conditions that update the stores and are
separate to the conditions for the applications of related functions to related
arguments. Therefore the question remains if applicative versions of Kripke-like
bisimulation semantics would be sound for higher-order languages with local
store.

Let us now consider such a semantics containing worlds of the form (s, s′, l, R),
where l are the locations in both s and s′ that can be used in the arguments
1 Note that in such Kripke-like bisimulation semantics the context C from which argu-

ments are constructed is taken to be location-free, and therefore only the locations
related in R are accessible directly in the arguments to functions.

2 A remaining open question is whether applicative bisimulations can be combined
with up-to-context reasoning [21].
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to functions. To prove that a world (s, s′, l, R) which relates F and G is in the
semantics, we need to show that for all arguments C using locations from l,
when the application (F C) under s evaluates to a value w and store t, then the
application (GC) under s′ evaluates to some value w′ and store t′, and (t, t′, Q)
is an appropriate world in the semantics which relates the values w and w′.

It is not immediately clear whether such a simpler version of Kripke-like
bisimulations would provide a sound model of higher-order imperative languages.
In this report we show that this would in fact be unsound, and argue that the
stronger conditions are necessary. We do that by presenting several examples,
each containing a pair of contextually inequivalent higher-order terms that can-
not be distinguished by the applicative conditions, but only from the more gen-
eral conditions.

The intuition in these examples is that in order for the higher-order terms
to be distinguished, they will have to be applied to functional values that con-
tain the terms themselves; i.e. values that are related, not identical. When these
arguments are applied within the related terms they invoke the terms again to
make the necessary observations. In other words, the related terms are distin-
guished only when applied again within the dynamic extent of applications of
their arguments.

We examine such examples in a number of higher-order languages with local
state: the nu-calculus of Pitts and Stark [19,23] (Section 2) and lambda calculi
with a first-order store (Section 3.1), a general store (Section 3.2), and existential
types (Section 4). The individual features of each of these languages change
the distinguishing power of the applicative semantics, and therefore change our
examples, but in none of the languages is this semantics sound with respect to
contextual equivalence.

2 Simple Names: the Nu-Calculus

We first look at the nu-calculus [19,23], the simplest of the languages we examine
in this paper. The nu-calculus is a strongly-normalising, simply-typed, call-by-
value lambda calculus over the base types of names (Nm) and booleans (Bool).
The only effect is the generation of names (νn. e) that can be passed around and
be tested for equality (n=m). The big-step operational semantics take the form

s ` e ⇓ (t)w

which means that under the set s of allocated names, expression e evaluates to
value w, generating a set of fresh names t in the process. We refer the reader to
[23] for details of the syntax and semantics of the calculus.

Example 1. Our example in the nu-calculus involves two higher-order terms M1

and M ′
1 of type (Nm→ Bool)→ Bool:

M1
def= νn. V1(n)

M ′
1

def= λf :Nm→ Bool. νn. f n
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where

V1(n) def= λf :Nm→ Bool. f n

The term M1 uses a local name generated once while M ′
1 generates a fresh local

name each time it is applied. The generated name n is passed to the argument
of both functions V1(n) and M ′

1 but, because there is no possibility of storing
the name, it never escapes to the context surrounding the functions. Thus both
V1(n) and M ′

1 reveal n to the context (i.e. to f) only for the dynamic extent of
the application f n. Therefore f can make observations about the related terms
that the surrounding context cannot make.

This is important to differentiate M1 and M ′
1. The following context C1

provides an argument to the terms that internally applies the value bound to g
(V1(n) or M ′

1) and uses the knowledge of n to differentiate them.

C1
def= let g = [·] in

let f =λn:Nm. g (λm:Nm.m=n) in
(g f)

Under any nameset C1 [M1] evaluates to true while C1 [M ′
1] evaluates to false.

It is easy to show that M1 and M ′
1 are indistinguishable when applied to the

same arguments.

Proposition 1. For any namesets s t, any value U of type Nm→ Bool that uses
names in s:

s `M1 U ⇓ (t) b iff s `M ′
1 U ⇓ (t) b

Let us now go back to our applicative adaptation of Kripke-style bisimulation
semantics for the nu-calculus. In this semantics we are be able to prove that M1

is related to M ′
1 by constructing the set{

(s⊕{n}, s⊕{n′},m, {(M1,M
′
1), (V1(n),M ′

1)}) | m ∈ dom(s) and n, n′ 6∈ dom(s)
}

and showing that all the tuples in the set satisfy the conditions of the semantics
using Proposition 1. ut

The preceding example shows that our fairly obvious adaptation of Kripke-
like bisimulation semantics to applicative conditions for functions is not sound
with respect to contextual equivalence in the nu-calculus. This suggests that
applicative conditions, although they elegantly express the semantics of pure
higher-order functions, are not suitable for higher-order functions with local
state. We verify this observation to other higher-order languages with local state
in the following sections.

3 Lambda Calculus with Store

3.1 First-Order Store

In this section we consider a simply-typed lambda calculus with locations, ranged
over by l, that can store boolean values. The expression νx := b. e creates a fresh
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location in the store containing the boolean constant b and binds x to the location
in e. Expression l := e updates the contexts of l with the (boolean) value of e,
and !l returns the contents of l. We consider big-step operational semantics for
this language of the form

〈s, e〉 ⇓ 〈t, w〉
meaning that under store s expression e evaluates to the value w and the store
becomes t.

In our nu-calculus example of the previous section we provided the distin-
guishing context C1 that made use of an equality test for names. Although the
language of this section does not have a name-equality construct, we could adapt
Example 1 using an encoding of name equality that writes a value to one location
and attempts to read it from the other. However, we give a different example
inequivalence that is robust to the addition of a general store.

Example 2. Consider the higher-order functions:

M2
def= λf :Unit→ Unit. f ()

M ′
2

def= ν flag := false. V ′
2(flag)

where

V ′
2(flag) def= λf :Unit→ Unit. if ! flag then div

else flag := true; f (); flag := false

and div is a diverging term. The term M2 is a function that always applies its
argument to (), whereas the term M ′

2 generates a private location flag , initially
set to false, and becomes V ′

2(flag). When flag is false, V ′
2(flag) sets the flag

to true during the application (f ()), and when the flag is true it diverges. The
term therefore diverges only during the extent of the application (f ()).

The following context distinguishes M2 and M ′
2:

C2
def= let g = [·] in

let f = (λx. g (λy. y)) in
g f

The term C2[M2] returns while C2[M ′
2] diverges. Applying M2 and V ′

2(flag) to
the same arguments and stores (modulo the location generated by M ′

2), however,
does not distinguish them, and therefore does not distinguish M2 and M ′

2.

Proposition 2. For any store s and t, any value U of type Unit→ Unit that
uses names in s, and any flag 6∈ s:

〈s, M2 U〉 ⇓ 〈t, ()〉 iff
〈s[flag = false], V ′

2(flag)U〉 ⇓ 〈t[flag = false], ()〉

Using this proposition we can prove that the following set satisfies the conditions
of the applicative bisimulation semantics of the introduction:{

(s, s[flag 7→ false],m, {(M2,M
′
2), (M2, V ′

2(flag))}) | m ∈ s and flag 6∈ s
}
ut
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3.2 General Store

In a language with general store, the observational power of contexts is more
significant, compared to that in the languages we examined so far. In such a
language, every value revealed by a higher-order function to its argument can
be stored and escape the dynamic extent of the function. This might lead one
to believe that all observations can be “linearised”, and that the applicative
Kripke-like bisimulation semantics of the introduction would be sound. However
Example 2 is still valid for a lambda calculus with general store and shows that
this is not the case.3

4 Existential Types

The last language we examine is a lambda calculus with existential types. Ex-
pression pack [τ ′, V ] as∃α. τ creates an existential package of type ∃α. τ , where
α is a type variable that may be free in τ and value V has type τ [τ ′/α]. A package
U = pack [τ ′, V ] as∃α. τ can be opened by the expression openU as (α, x) in e,
which replaces α with τ ′ and x with V in e.

Although this language has no store, existential packages encode a form of
local state. In a package of type ∃α. τ the values of the type α are only locally
known to the package, and can selectively be revealed to the context.

It is not immediately clear what the most plausible form of applicative bisim-
ulation would be for this language. The main issue is that simply testing re-
lated functions contained in existential packages by applying them to identi-
cal arguments is too weak of a condition. Functions within packages of type
∃α. α × (α→ Bool) can only be applied to related arguments (the first compo-
nent of the existential packages). Thus we would have to allow certain related
values within otherwise identical arguments. However, we would certainly not
allow the arguments to contain the functions to which they are passed, as this
would greatly depart from the “applicative” nature of the conditions. The fol-
lowing inequivalent terms show that this approach would still be unsound for
this language.

Example 3. Consider the following existential packages:

M3
def= pack [Unit, V3] asT

M ′
3

def= pack [Bool, V ′
3 ] asT

3 Note that if we apply M2 and V2(flag) to identical arguments that refer to locations
in related stores containing the values M2 and V2(flag) then we recover the distin-
guishing power of related arguments. This is easy to see since any related arguments
of the form C[v] and C[v′] can be translated to identical arguments of the form C[l]
under the related stores [l = v] and [l = v′].
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where

V3
def= λf :Unit→ Unit. f (); true

V ′
3

def= λf :Bool→ Bool. if (f false) then false else (f true)

T
def= ∃α. (α→α)→ Bool

These are distinguished by the following context:

C3
def= open [·] as (α, g) in

g (λy :α. if (g (λz :α. y)) then y else div)

Any form of applicative Kripke-like bisimulation semantics, as we discussed
above, would only apply the functions within M3 and M ′

3 to arguments of type
α→α that do not contain the functions themselves. These arguments would
either behave as the identity function or they would diverge when applied. Hence,
it would not be difficult to show that, because V3 and V ′

3 are indistinguishable
when applied to λx:α. x or to λx:α. div , the terms M3 and M ′

3 would be related
in that semantics. ut

5 Conclusions

We have studied a number of higher-order languages with local state, for which
we gave a number of illuminating contextual inequivalences between terms.
These inequivalences can be witnessed by contexts that apply higher-order func-
tions to arguments that contain the functions themselves. We have given an
applicative version of Kripke-like bisimulation semantics for these languages and
showed that it would relate these inequivalent terms and is therefore unsound
with respect to contextual equivalence.

The second author [16] has previously shown that in a typed lambda calculus
with McCarthy’s amb construct for fair non-determinism at non-ground types,
applicative bisimulation is not a congruence.

Jeffrey and Rathke [9] have given a form of applicative bisimulation for the
nu-calculus, one of the languages we examined here, based on a labelled tran-
sition system and showed that it also is unsound with respect to contextual
equivalence. However they showed that the addition of integer references makes
their bisimulation sound and complete. A more detailed comparison between
their approach and ours is necessary to reveal the source of this incompatibility.

Previous work by Mason and Talcott [17] has showed that function extension-
ality does not hold in languages with effects, identifying in this way a potential
issue with extending applicative bisimulations to imperative higher-order lan-
guages. Their counterexamples, however, can be handled by a Kripke form of
applicative bisimulations. Nevertheless, the counterexamples we have given in
this paper give a more robust argument as to why applicative bisimulations are
not appropriate semantics for higher-order languages with local state.
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