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Abstract. Over the last decade, step-indices have been widely used for
the construction of operationally-based logical relations in the presence of
various kinds of recursion. We first give an argument that step-indices,
or something like them, seem to be required for defining realizability
relations between high-level source languages and low-level targets, in
the case that the low-level allows egregiously intensional operations such
as reflection or comparison of code pointers. We then show how, much
to our annoyance, step-indices also seem to prevent us from exploiting
such operations as aggressively as we would like in proving program
transformations.

Introduction

Since their introduction by Appel and McAllester [4], step-indexed logical rela-
tions (both binary and unary) have been widely used for operational reasoning
about about many kinds of ‘difficult’ language features, including recursive types
[1], first-class references [2] and objects [10]. In all these cases, simple induction
on types is inapplicable and one naturally finds oneself trying to construct re-
lations as solutions to some contra- or mixed-variance recursive equation that,
interpreted naively, would for simple cardinality reasons have only trivial, or even
no, solutions. Denotational techniques (using minimal invariance properties of
solutions to recursive domain equations [11] or metric constructions [9]) are an
alternative approach, but are often perceived as involving more sophisticated
mathematics and seem harder to apply to, for example, concurrency or unstruc-
tured low-level languages. Step-indexed relations are stratified by the number
of execution steps available for testing relatedness: the more steps available, the
finer the relation. Well-founded recursive definitions can then be made if the
definition of the relation at level k only ever depends on itself at levels j < k,
which is typically natural when examining a value (e.g. following a pointer or
calling a function) takes at least one step.

Many authors have noticed the ‘ugly’ side of step-indices, which is that defini-
tions and proofs have a tendency to become cluttered with extra indices and even
arithmetic, which are really playing the role of ‘construction lines’. This clutter

? Research supported by Digiteo/Ile-de-France project COLLODI (2009-28HD).

Dagstuhl Seminar Proceedings 10351 
Modelling, Controlling and Reasoning About State 
http://drops.dagstuhl.de/opus/volltexte/2010/2808

1



has been largely alleviated by more recent progress in replacing the slightly vul-
gar concrete natural numbers with more abstract modal operators [5]. Another
ugliness is the non-canonical nature of just what one chooses to count, and how
one counts it. More than one author will admit (if not in print) to randomly
trying ‘<’s and ‘≤’s in different places until the proofs go through...

We have employed step-indexing in some recent work on compiler correctness
[8,7], as a way of capturing low-level analogues of denotational admissibility (clo-
sure under limits of chains) or operational unwinding (behaving well with respect
to syntactic approximations to a fixpoint combinator) properties of high-level re-
lations. Such admissibility properties play a well-understood role in high-level
relational reasoning even when just term-level recursion or looping is present,
and step-indexing seems a natural way to transfer those properties to low-level
programs [6,12]. The first part of this talk derives from [7], and explains the
‘good’ side of step-indices for working with relations over low-level code. We
show how the presence of non-extensional operations in an untyped model of
computation can break a standard realizability interpretation of types when the
source language includes term-level recursion, and how the extra tests required
by a step-indexed interpretation fix the problem. The second part shows the
‘bad’: the step indexed interpretation requires certain bad computations not to
go wrong ‘too quickly’, which ends up ruling out some clever low-level transfor-
mations that we believe should be valid, but which seem to optimize too well.

Defining the meaning of simple types via a logical predicate over terms in
an untyped lambda-calculus based language is entirely standard. We’ll consider
what happens when we try to do the same thing over an untyped language
in which terms can also be tested intensionally for α-equivalence, an operation
which we regard as a proxy for the ability of machine code programs to compare
code pointers for equality or to read executable instructions, Java programs to
perform dynamic type tests or use reflection, or programs in popular dynamic
languages to do all sorts of things that shouldn’t be spoken of in polite company.

One’s natural intuition is that the nature of logical relations is that one
always says ‘a thing is good if whenever it’s put into a good context, the resulting
behaviour is good’, and that this means that the range of possible bad stuff in the
untyped model of computation doesn’t really affect the form of such a definition.
And indeed, for interpreting the pure, total, simply typed calculus in the spirit
of the Curry-Howard isomorphism, that intuition is quite correct. The issue
arises when we try to apply the same ideas to interpret a typed language with
recursion, in which (amongst other things) every type is inhabited by divergence,
and we expect a fixpoint combinator to inhabit its natural types. It is well-known
that everything works out straightforwardly, with only minor differences from
the normalizing case, when the untyped model is the usual untyped lambda
calculus. Let’s see what happens when we instead use our lambda calculus with
equality testing.
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Abstract low-level language λve

As an abstract setting in which to investigate the issues raised by the presence of
very intensional operations in low-level languages, we will work with an untyped
lambda calculus, λve, including reflective construct that tests arbitrary values
for syntactic equality. Fix a countable set V of variables. The set of values Val
and the set of terms Term with variables in V are defined mutually inductively
as follows:

Val 3 u, v := x

| λx. t
Term 3 s, t := v

| t s
| u ≡α v
| ERROR

where x ∈ V. As usual, application is left-associative. FVar(t) for any term t de-
notes the set of free variables in t, and t [x 7→ s] the capture-avoiding substitution
of the term s for the variable x in the term t.

We also define some syntactic sugar for boolean operation and recursion
(implemented via a CBV fixed point combinator).3

TRUE , λx. λy. x y

FALSE , λx. λy. y x

if t then s1 else s2 , t (λx. s1) (λx. s2)[
x 6∈ FVar(s1) ∪ FVar(s2)

]
rec t , λx. (λy. t (λz. y y z)) (λy. t (λz. y y z)) x[

x, y 6∈ FVar(t), z 6= y
]

The small-step call by value operational semantics is given as follows:

t  t′ =⇒ t s  t′ s

s  s′ =⇒ v s  v s′

(λx. t) v  t [x 7→ v]

u ≈α v =⇒ u ≡α v  TRUE

u 6≈α v =⇒ u ≡α v  FALSE

where x ∈ V, u, v ∈ Val, t, t′, s, s′ ∈ Term and where u ≈α v means that u is

alpha-equivalent to v. For convenience, we define the multi-step relations
k
 

and
∗
 by setting t

k
 t′ iff the term t reaches t′ in k steps; and t

∗
 t′

iff t reaches t′ in zero or more steps. Note that ERROR, and terms in which it
appears in an evaluation position, are stuck. We also define the proper (i.e.

stuck-free) termination and divergence relations: t ↓ iff ∃v. t ∗
 v; and t ↑ iff

∀k. ∃t′. t k
 t′.

3 One could add language constructs for booleans and recursion, rather than using
these encodings, without affecting the arguments at all. This choice just keeps the
basic calculus smaller.
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Standard logical relation

Due to the syntactic equality test, the obvious untyped notion of contextual
equivalence for λve collapses to the syntactic alpha equality [13]. For instance,
the terms λx. x and λx. (λy. y) x can be distinguished by the context if [−] ≡α
λx. x then TRUE else div for some divergent term div. Our aim, however, is to
interpret types as relations that relate equivalent well-behaved untyped terms,
where the requirement to be ‘well-behaved’ only involves behaviour when placed
in appropriately well-behaved contexts. We expect to rule out contexts such as
the one we just gave, and hence, for example, to relate the untyped identity
function and its eta-expansion at the interpretation of any type of the form
T → T .

One may think that a completely standard logical relation will give such a
notion of typed equivalence. Let us try it here. For simplicity, we only consider
boolean and arrow types:

Type 3 T := Bool | T → T ;

and relate closed values and terms, which are those that have no free variables
in them: ≈T ⊆ ClosedVal×ClosedVal and [≈]

T ⊆ ClosedTerm×ClosedTerm for
T ∈ Type defined by a mutual induction on T :

≈Bool = { (TRUE, TRUE), (FALSE, FALSE) }
≈T1→T2 = { (u, u′) | ∀v ≈T1 v′. u v [≈]

T2 u′ v′ }
[≈]

T
= { (t, t′) | (t ↑ ∧ t′ ↑) ∨

(∃v, v′. t ∗
 v ∧ t′

∗
 v′ ∧ v ≈T v′) }

[≈]
T

is symmetric by definition and its transitivity can be shown by proving
the following proposition by induction over T :

(∀v ≈T v′. v ≈T v) ∧ (∀t [≈]
T
t′. t [≈]

T
t) ∧

≈T is transitive ∧ [≈]
T

is transitive.

Thus, [≈]
T

forms a partial equivalence relation on ClosedTerm; that is, an equiv-
alence relation on

JT K = { t | t [≈]
T
t } ⊆ ClosedTerm .

One can think of JT K as the set of all good terms of type T and [≈]
T

as the

semantic equivalence on JT K. This typed equivalence [≈]
T

gives a compositional
and adequate notion of equivalence in the following sense:

Theorem 1 (Compositionality).

1. ∀t, s. t ∈ JT1 → T2K ∧ s ∈ JT1K =⇒ t s ∈ JT2K.

2. ∀t, t′, s, s′. t [≈]
T1→T2 t′ ∧ s [≈]

T1 s′ =⇒ t s [≈]
T2 t′ s′.
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Theorem 2 (Adequacy).

1. ∀t ∈ JT K. t ↓ ∨ t ↑.

2. ∀t [≈]
T
t′. (t ↓ ∧ t′ ↓) ∨ (t ↑ ∧ t′ ↑).

Note that it is the compositionality that guarantees that linking of good terms
is safe (i.e., it yields a good term).

Problem with standard logical relation

Though the standard logical relation gives an adequate notion of equivalence,
it is not big enough to admit all sensibly good terms. As an example, we show
that the fixed point combinator Y defined by

Y , λf. rec f

is not in the set

J((Bool→ Bool)→ Bool→ Bool)→ Bool→ BoolK,

which means that the innocent Y-combinator is treated as a bad term and thus
ruled out.

We first note that the semantics of types JT K defined via the logical relation
satisfies the following properties.

(Prop 1) TRUE, FALSE ∈ JBoolK.
(Prop 2) Given a value u ∈ JA1 → . . .→ An → BoolK and values

v1 ∈ JA1K, . . . , vn ∈ JAnK,

the application of u to the vis does not go wrong: u v1 . . . vn
∗
 / ERROR.

(Prop 3) For a value u, if u v
∗
 v for all values v ∈ JT K, then u ∈ JT → T K.

Our argument will actually depend only on these (rather minimal) properties
of the logical relation, not on any more specific details of its definition. Let the
value F be defined by

F , λg. λf. if f ≡α (rec g) then λx. ERROR else f

and observe the following facts about the behaviour of F :

(Obs 1) For any value v ∈ Val,

(rec F ) v
2
 F (rec F ) v
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{
λx. ERROR if v ≈α rec rec F
v otherwise

(Obs 2) (rec rec F ) v
2
 (rec F ) (rec rec F ) v

7
 (λx. ERROR) v

1
 

ERROR, for v ∈ { TRUE, FALSE }
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(Obs 3) Y (rec F ) TRUE  (rec rec F ) TRUE
∗
 ERROR

From these observations, we can conclude that

(Con 1) rec rec F 6∈ JBool→ BoolK because TRUE ∈ JBoolK by (Prop 1),

(rec rec F ) TRUE
∗
 ERROR by (Obs 2), and well-typed applications don’t

go wrong by (Prop 2).
(Con 2) rec F ∈ J(Bool→ Bool)→ Bool→ BoolK: because rec F behaves as

the identity on all values except rec rec F by (Obs 1) and rec rec F
is not in JBool→ BoolK by (Con 1), rec F must behave as the identity
on all values that are in JBool→ BoolK and thus we get the conclusion by
(Prop 3).

(Con 3) Now we see that

Y 6∈ J((Bool→ Bool)→ Bool→ Bool)→ Bool→ BoolK

because

Y (rec F ) TRUE
∗
 ERROR (Obs 3)

rec F ∈ J(Bool→ Bool)→ Bool→ BoolK (Con 2)
TRUE ∈ JBoolK (Prop 1)

and well-typed applications don’t go wrong by (Prop 2).

This is not at all what we wanted! One would expect (Con 2) to be false,
since F is clearly highly suspicious, and then the blameless Y could have the
expected type. Our analysis of the problem is that (Prop 3) is the only one
of the properties that could be modified in order to get the expected result.
In short, just testing with ‘good’ arguments is actually insufficient grounds for
concluding that a function is good: we need some extra tests on ‘partially good’
values, which is just what step-indexing will supply.

Step-indexed logical relation

We modify the standard logical relation using the idea of step-indexing and see
how this fixes the above problem. The basic idea is that we consider terms that
behaves well up to k number of steps as partially good terms up to k steps,
and say that good functions are those that behaves well up to k steps for any
arguments that are partially good up to k steps for k ∈ N. There are, as we noted
previously, many subtly different ways in which we could define the step-indexed
relation. We pick one for the sake of concreteness, but believe that essentially
the same issue will arise for any alternative step-indexed relation.

The step-indexed families of relations≈Tk ⊆ ClosedVal2 and [≈]
T
k ⊆ ClosedTerm2

for T ∈ Type and k ∈ N are defined by a mutual induction on T :

≈Bool
k = { (TRUE, TRUE), (FALSE, FALSE) }

≈T1→T2

k = { (u, u′) | ∀j ≤ k, v ≈T1
j v′. u v [≈]

T2

j u′ v′ }
[≈]

T
k = { (t, t′) | (∃s, s′. t k

 s ∧ t′
k
 s′) ∨

(∃j, v, j′, v′. t j
 v ∧ t′

j′

 v′ ∧ v ≈Tk−min(j,j′) v
′) }
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We take good terms as those that are partially good up to any number of
steps:

[≈]
T

= { (t, t′) | ∀k ∈ N. t [≈]
T
k t
′ } .

As there seems no general reason to expect that the relations [≈]
T

are transitive,

we take a transitive closure, say [≈]
T+

, to obtain a notion of equivalence.

JT K = { t | t [≈]
T
t } ⊆ ClosedTerm

[=]
T

= { (t, t′) ∈ JT K× JT K | t [≈]
T+

t′ }

This typed equivalence is also compositional and adequate:

Theorem 3 (Compositionality).

1. ∀t, s. t ∈ JT1 → T2K ∧ s ∈ JT1K =⇒ t s ∈ JT2K.

2. ∀t, t′, s, s′. t [=]
T1→T2 t′ ∧ s [=]

T1 s′ =⇒ t s [=]
T2 t′ s′.

Theorem 4 (Adequacy).

1. ∀t ∈ JT K. t ↓ ∨ t ↑.

2. ∀t [=]
T
t′. (t ↓ ∧ t′ ↓) ∨ (t ↑ ∧ t′ ↑).

Furthermore, by simple calculation, one can show that

Y ∈ J((Bool→ Bool)→ Bool→ Bool)→ Bool→ BoolK .

To see the reason intuitively, let us see how the suspicious term rec F is
ruled out. Though rec rec F is not in JBool→ BoolK, it is good up to 9
steps, i.e., rec rec F [≈]

Bool→Bool
9 rec rec F , because (rec rec F ) v for v ∈

{ TRUE, FALSE } takes at least 9 steps by (Obs 2). Thus, if we assume that
rec F is in J(Bool→ Bool)→ Bool→ BoolK, then (rec F ) (rec rec F ) should
be good up to 9 steps. As the application reduces to the value λx. ERROR at 7
steps by (Obs 1), the resulting value should be good up to 2 steps. However
this is not the case because its application to the values TRUE and FALSE reduces
to ERROR at one step. Thus we can conclude that the term rec F is not good, so
the argument in the previous section does not apply to the step-indexed logical
relation.

Problem with step-indexing

The step-indexed logical relation gives a well-behaved notion of equivalence,
admitting all the ‘obviously’ well-typed terms (those which don’t use equality
testing) and validating most of the equivalences on those that one would expect.
That’s the ‘good’. The ‘bad’ is that it seems to rule out more than we would
really like it to. One would hope that not all uses of of low-level intensional
operations would be forbidden, but only those that violate the contract on ob-
servable behaviour associated with our types. There are many practically useful
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transformations that safely exploit the ability to compare code pointers or read
instructions, without changing observable behaviour. But we’ll now show how a
natural example of such a transformation, using our syntactic equality test to
perform a ‘clever’ optimization, is ruled out by the step-indexed logical relation,
so showing that step-indexing is still rather too intensional.

Consider the three terms I, Ω and A defined as follows:

I := λx. (λy. y) . . . (λy. y) x (100 times)

Ω := rec (λf. λx. f x)

A := λf. λx. if f ≡α I then x else f x

I is an identity function but takes 100 steps when applied to values, Ω is a
function that always diverges when applied to any value, and A takes two values
f and v and essentially applies f to v, except that if f is syntactically equal to I,
so A detects that it has been given an expensive version of the identity function,
then A optimizes by just returning the argument v directly.

The term A seems to perform an entirely correct and useful optimization,
but is unfortunately rejected by our step-indexed logical relation. To see why, let
us assume that A ∈ JBool4K for Bool4 = (Bool→ Bool)→ Bool→ Bool. Since
both I and Ω take at least 50 steps (say) whenever applied to any value, we have

that I ≈Bool→Bool
50 Ω. As A is a value and A [≈]

Bool4
A, we must have A ≈Bool4

k A

for any k. In particular, A ≈Bool4

50 A, so A I [≈]
Bool→Bool
50 A Ω. Since

A I
1
 (λx. if I ≡α I then x else I x)

and

A Ω
1
 (λx. if Ω ≡α I then x else Ω x),

that means

(λx. if I ≡α I then x else I x) ≈Bool→Bool
49 (λx. if Ω ≡α I then x else Ω x).

Trivially, TRUE ≈Bool
49 TRUE, and since (λx. if I ≡α I then x else I x) TRUE
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TRUE, we can easily deduce that (λx. if Ω ≡α I then x else Ω x) TRUE

must terminate, which clearly does not hold. Hence our original assumption
that A ∈ JBool4K must have been false.

The problem here is attributable to the extra intensional requirements im-
posed by step indexing (and which we argued were helpful in the previous sec-
tion). It does not suffice to yield good behaviour in good contexts, but one must
also yield approximately good (e.g. taking a certain number of steps without
error) behaviour in approximately good contexts (e.g. ones supplying function
arguments that take take some steps). The difficulty with A from the point of
view of the step indexed relation is that it optimizes “too well” to respect the
extra intensional requirements.
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Conclusion

In the presence of both source-level recursion and very intensional low-level oper-
ations of the sort that are both present and practically exploited in real low-level
machines, a naive attempt to transfer the kind of realizability interpretation of
types that works for more structured untyped computational models goes wrong.
Step-indexing fixes that problem, but still fails to allow realizers (like those Appel
describes in [3]) that seriously exploit the intensional operations. Unfortunately,
we do not yet have a better alternative.
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