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Abstract. In the field of scientific modeling, one is often confronted with
the task of drawing samples from a probability distribution that is only
known up to a normalizing constant and for which no direct analytical
method for sample generation is available. Since the past decade, adap-
tive Markov Chain Monte Carlo (MCMC) methods gained considerable
attention in the statistics community in order to tackle this black-box (or
indirect) sampling scenario. Common application domains are Bayesian
statistics and statistical physics. Adaptive MCMC methods try to learn
an optimal proposal distribution from previously accepted samples in
order to efficiently explore the target distribution. Variable metric ap-
proaches in black-box optimization, such as the Evolution Strategy with
covariance matrix adaptation (CMA-ES) and Gaussian Adaption (GaA),
use almost identical ideas to locate putative global optima. This extended
abstract summarizes the common concepts in adaptive MCMC and co-
variance matrix adaptation schemes. We also present how both types
of methods can be unified within the Gaussian Adaptation framework
and propose a unification of both fields as “grand challenge” for future
research.
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1 Black-box sampling and Black-box optimization

In many areas of science and engineering a modeler is often confronted with
systems where no prior information is available about intrinsic system properties.
Such systems are called black-box systems. The transfer characteristics of a
black-box system can only be analyzed through (multivariate) system input x
and corresponding (scalar) output f(x) (see Fig. 1 a). Black-box optimization
is concerned with the determination of the input that optimizes the output
of the black box. In black-box sampling, the system represents a probability
distribution from which unbiased samples need to be generated. Sketches of
both scenarios are depicted in Fig. 1 b. and c, respectively. In this contribution
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Fig. 1: a. Sketch of a black-box system with multivariate input x ∈ Rn and scalar output
f(x) ∈ R. b. Black-box optimization aims at finding the input (marked in red) that
optimizes (here minimizes) the system output f(x). b. In black-box sampling input
samples are generated over the whole input domain (marked in red) proportional to
the target probability. The resulting histogram of the produced ensemble (sketched in
blue) should approximate the true underlying target probability f(x).

we focus on black-box systems with real-valued multivariate input x ∈ Rn and
scalar output f(x) ∈ R.
Although black-box optimization and sampling face similar difficulties in prac-
tice, the scientific disciplines that investigate these scenarios are largely disjoint.
Black-box optimization problems are generally investigated by the Evolution-
ary Computation community and, to less extent, by the Operations Research
community. Black-box sampling, on the other hand, is a subfield of computa-
tional statistics. It comes at no surprise that a number of important ideas have
been independently developed in the different communities. The most striking
example is the emergence of iterative sampling schemes that continuously adapt
the first and second moments of a multivariate Gaussian “search” or “proposal”
distribution.

2 Covariance matrix adaptation schemes for black-box
optimization

Two state-of-art continuous black-box optimizers employ the adaptation concept
in their search for putative optimal solutions: Hansen’s Evolution Strategy with
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Covariance Matrix Adaptation (CMA-ES) [1, 2, 3] and Kjellström’s Gaussian
Adaptation algorithm [4, 5, 6, 7, 8].

Standard CMA-ES samples in each generation a population of candidate so-
lutions from a multivariate Gaussian distribution. The sample points are ranked
according to their objective function values, and a certain percentage of the
best solutions are selected and used to both adapt the mean and the covari-
ance matrix of the search distribution. The (1+1)-CMA-ES [9] is a variant that
only produces a single sample per generation that is selected if it carries a lower
objective function value than the previous.

Gaussian Adaptation is similar to the (1+1)-CMA-ES but uses threshold
acceptance as selection mechanism. In each generation, samples are accepted
and used for adaptation if their objective function values are below a threshold
cT. The threshold is decreased during the search process.

Both algorithms include a mechanism that adapts the global scale (or step
size) of the search distribution. An important conceptual difference between
CMA-ES and GaA is the purpose of covariance adaptation: While CMA-ES is
designed to increase the likelihood of generating successful search directions, GaA
adapts the covariance such as to maximize the entropy of the search distribution
under the constraint that acceptable search points are found with a predefined,
fixed acceptance probability.

3 Adaptive MCMC methods for black-box sampling

A large class of black-box samplers is based on the generation of so-called Markov
Chains. Consider a sequence of random variables x(0),x(1), . . . ,x(g), . . . ,x(N)

defined on a state space X . This sequence is called a Markov Chain, if it satisfies
the Markov property :

P (x(g+1) = y |x(g) = x, . . . ,x(0) = z) = P (x(g+1) = y|x(g) = x) , (1)

with x,y, z ∈ X . This means that the next state x(g+1) only depends on the
current state x(g) where P (·|·) denotes the transition probability from a given
state to the next one. In continuous state spaces X , the transition probability
function is modeled by a transition density function A(x,y).

Since Metropolis and co-workers introduced the Metropolis algorithm [10]
and Hastings’ generalization [11], the density A(x,y) of most MCMC method
comprises two components, a proposal distribution q(·|·) and an acceptance cri-
terion αMH. Green and Han [12] were among the first to employ the isotropic
Gaussian distribution as q(·|·) for continuous target distributions π(x). The
Metropolis-Hastings acceptance criterion is:

αMH(x,y) = min

(
1,
π(y)q(y|x)

π(x)q(x|y)

)
. (2)

The transition density function for the general Metropolis-Hastings (MH) algo-
rithm thus reads:

A(x,y) = q(x|y)αMH(x,y) . (3)
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Adaptive MCMC methods have been introduced in order to avoid the difficul-
ties of fine-tuning proposal distributions in MH algorithms for specific target
distributions. An adaptive MCMC method is allowed to learn a better proposal
based on the information provided by previous sample points. The first method
of this kind is the Adaptive Proposal (AP) algorithm [13] and its generaliza-
tion, the Adaptive Metropolis (AM) algorithm [14]. Both algorithms employ the
Gaussian density as proposal distribution. Key to both schemes is the dynamic
adaptation of mean and covariance of the proposal based on the accepted states
of the chain. The AM algorithm is summarized in Alg. 1

Algorithm 1: The AM algorithm

Input: Initial x(0), m(0), C(0), r
Result: Unbiased sample x(0), . . . ,x(K) from target distribution π(x)
for g = 0, 1,K − 1 do

1. Sample x(g+1) ∼ N
(
x(g), r2C(g)

)
2. Apply Metropolis criterion αMH(x(g+1),x(g)) = min

(
1, π(x

(g+1))

π(x(g))

)
3. Update

m(g+1) = m(g) + γ(g+1)
(
x(g+1) −m(g)

)
C(g+1) = C(g) + γ(g+1)

((
x(g+1) −m(g)

)(
x(g+1) −m(g)

)T
−C(g)

)
end

For adaptive samplers, a prerequisite for generating unbiased samples from the
target distribution is the concept of vanishing adaptation. This means that the
adaptation of first and second moments becomes smaller in the course of the
sampling process. This is realized by the sequence of numbers γ(g). Andrieu and
Thoms [15] provide mathematical conditions for the sequence γ(g) in order to
achieve vanishing adaptation. For instance, sequences of the form γ(g) = γ0/g

k

with k ∈ [(1+ε)−1, 1] with γ0, ε > 0 are consistent. In the original AM algorithm
Haario and co-workers simply use γ(g) = 1/g. Andrieu and Thoms also provide
alternative update formulae for mean and covariance (see [15] for details). More-
over, they suggest a AM variant that adapts the scale factor r. They term this
generic algorithm the AM algorithm with global adaptive scaling summarized in
Alg. 2 The adaptation of the global scale factor r provides a means to control
the acceptance rate of the sampler. P ∗ is the user-defined fixed target acceptance
rate of the sampler and α̂MH is the empirical acceptance probability. Gelman’s
optimal rate of 0.234 for Gaussian targets could be a default choice [16]. It is
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Algorithm 2: Generalized AM algorithm with global adaptive scaling

Input: Initial x(0), m(0), C(0), r(0) and P ∗

Result: Unbiased sample x(0), . . . ,x(K) from target distribution π(x)
for g = 0, 1,K − 1 do

1. Sample x(g+1) ∼ N
(
x(g), r(g) 2C(g)

)
2. Apply Metropolis criterion αM(x(g+1),x(g)) = min

(
1, π(x

(g+1))

π(x(g))

)
3. Update

log (r(g+1)) = log (r(g)) + γ(g+1)
(
α̂MH(x(g+1),x(g))− P ∗

)
m(g+1) = m(g) + γ(g+1)

(
x(g+1) −m(g)

)
C(g+1) = C(g) + γ(g+1)

((
x(g+1) −m(g)

)(
x(g+1) −m(g)

)T
−C(g)

)
end

amazing that this scheme is exactly the generic framework of GaA and CMA-
ES-like optimization algorithms, yet in the context of black-box sampling. Note
that update of the covariance and the global step size are (like in CMA-ES) not
decoupled, thus hampering an efficient learning of the global scale in this con-
text. As a remedy Andrieu and Thoms present variations of this scheme, such as,
e.g., component-wise update of mean, covariance and scale factors, all of which
have well-known equivalents in the optimization context since many years.

4 Unifying black-box optimization and sampling through
Gaussian Adaptation

To the best of our knowledge, the close relationship between the presented
black-box optimizers and adaptive MCMC methods has not been previously
recognized. Gaussian Adaptation provides now a straight-forward means to com-
bine black-box optimization and adaptive MCMC in a unifying framework. We
present a GaA variant for black-box sampling that can be seen as a specific in-
stance of an adaptive MCMC with global adaptive scaling [17]: the Metropolis
Gaussian Adaptation (M-GaA).

4.1 Metropolis Gaussian Adaptation: an adaptive MCMC method

When using GaA for optimization, sample points with function values higher
than the threshold cT are strictly rejected and points with lower values accepted.
For black-box sampling this hard threshold is now replaced by the Metropolis
acceptance-rejection scheme αMH(x(g+1),x(g)). In cases where the continuous
target probability distribution π(x) is only known up to a normalization con-
stant, f(x) ∝ π(x) is used in the acceptance criterion. We further move GaA’s
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mean directly to the accepted sample x(g+1). For the remaining parameters the
standard settings are used. This yields a sampling algorithm with adaptive Gaus-
sian proposals. Moreover, M-GaA possesses the convenient feature of setting the
acceptance probability P a priori. The standard setting is P = 0.234. This
renders M-GaA an adaptive MCMC sampler with global adaptive scaling and
decoupling of covariance orientation and scale because the updated covariance
is constantly normalized. Similar to the AP algorithm, M-GaA does not yet em-
bed the concept of vanishing adaptation, leading to a scheme where ergodicity
cannot be proven. It is, however, straightforward to include this concept into
M-GaA. A detailed description of M-GaA can be found in [17].

4.2 Test scenarios for M-GaA

Different test scenarios for benchmarking adaptive MCMC algorithms are avail-
able in the literature. We highlight two such scenarios where M-GaA has been
applied and compared to other samplers. One benchmark is based on the tests
provided by Haario and co-workers for the AP and the AM algorithm [13, 14]
and revisited in Andrieu and Thoms’ tutorial [15]. The second benchmark is
from Neal’s article on Slice Sampling [18]. We describe these test scenarios here.
Details about numerical results for M-GaA and alternative samplers are avail-
able in [17] and [19].

Haario’s distributions. Following the protocol outlined in [13] the following
three test target distributions are known to be suitable for adaptive MCMC
methods:

π1: Uncorrelated Gaussian distribution
π2: Moderately twisted Gaussian distribution
π3: Strongly twisted Gaussian distribution

Distribution π1 is a centered n-dimensional multivariate normal distribution
N (0,C1) with C1 = diag(100, 1, . . . , 1). It thus has the shape of an axis-aligned
hyper-ellipsoid with an axes aspect ratio of 10. The twisted Gaussians are con-
structed as follows: Let g be the density of π1. The density function of a twisted
Gaussian with twisting parameter b > 0 is then given by

gb = g(Φb(x)) , (4)

where Φb(x) = (x1, x2 + bx21 − 100b, x3, . . . , xn). Φb thus only affects the second
coordinate, and the determinant of its Jacobian is unity [13]. It is easy to compute
probability regions of gb and to verify that the expectation value of gb is 0 for
all b. Haario et al. used b = 0.03 for π2 and b = 0.1 for π3. Fig. 2 shows the
contour lines of the 68.3% and 99% probability regions of π1 to π3. Haario et
al. also suggested the following quality measures for sampling algorithms:

1. mean(‖E‖): The mean distance of the expectation values from their true
value (0), averaged over N repetitions
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Fig. 2: 68.3% and 99% probability regions of the three test target distributions π1 (red),
π2 (blue), and π3 (green) in 2D. The parameter b controls the distortion of the Gaussian
density (see main text for details).

2. std(‖E‖): The standard deviation of the distance of the expectation values
from their true value, averaged over N repetitions

3. err(≤ 68.3%): The mean error (in %) of the percentage of sampled points
that hit the probability region inside the 68.3% contour

4. std(≤ 68.3%): The standard deviation of err(≤ 68.3%)
5. err(> 99%): The mean error (in %) of the percentage of sampled points that

hit the probability region outside the 99% contour.
6. std(> 99%): The standard deviation of err(> 99%)

For these target distributions, adaptive MCMC algorithms like M-GaA show
superior performance with respect to the presented quality measures. We refer
to [13, 14, 15, 17] for further details.

Neal’s funnel distribution. In his seminal paper on Slice Sampling [18], Neal
introduced a funnel-shaped test distribution πf(x). It is a ten-dimensional dis-
tribution with variables x = (v, x1, x2, . . . , x9). The marginal distribution of v is
N (0, 32). Conditional on a given value of v, the variables x1 to x9 are indepen-
dent, with the conditional distribution for each being Gaussian with N (0, ev).
The resulting shape of the distribution resembles a single ten-dimensional fun-
nel, with increasing values for v from one end to the other. A contour plot of
πf(x) is provided in upper right part of Fig. 3. Neal states that “Such a distri-
bution is typical of priors for components of Bayesian hierarchical models: x1
to x9 might, for example, be random effects for nine subjects, with v being the
log of the variance of these random effects. If the data happens to be largely
uninformative, the problem of sampling from the posterior will be similar to
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that of sampling from the prior, so this test is relevant to actual Bayesian in-
ference problems.” A direct sampling method is straight-forward and consists of

first sampling v(g) from N (0, 32) and then, conditionally sampling all x
(g)
i from

N (0, ev
(g)

). A representative sample of size 2e4 along with the corresponding
marginal histograms for v and xi are depicted in lower and left part of Fig. 3.
For standard Metropolis-based schemes, the difficulty of sampling from πf(x) is
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Fig. 3: Contour plot of the density πf(x) of v and an arbitrary xi in the top right
corner. Direct samples from this distributions for v (red) and an arbitrary xi (blue)
are depicted in the lower right and upper left corner, respectively.

the low probability of accepting a proposal state when the chain is in a region
of negative v, for instance v(g) = −4. Conditional on this value, the variances
of xi would attain the tiny value of 0.018 leading to a highly peaked Gaussian.
Hence, a MH algorithm with a standard multivariate Gaussian proposal N (0, I)
would, in the majority of cases, propose samples that are rejected. The chain
gets stuck on the lower end of the funnel. The same reasoning also hinders the
chain from visiting negative v values when started from positive values because
these moves are almost always rejected. Hence, monitoring the v(g) values of the
chain reveals the efficiency of the MCMC method.

This target distribution is challenging for adaptive MCMC methods. Numer-
ical data for M-GaA are available in [19]. M-GaA can reproduce the correct
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marginal for v(g) but diverges in all xi. This indicates that the vanishing adap-
tation mechanism must be built into M-GaA in order to stabilize the covariance
matrix estimation.

5 A unifying framework for black-box optimization and
sampling as “grand challenge”

In this contribution we explored adaptive algorithms for black-box optimization
and sampling. In identifying and analyzing the common design principles and
features of CMA-ES, GaA and adaptive MCMC methods, we have been able to
synthesize a novel adaptive MCMC method, M-GaA, that showed encouraging
performance on the presented test problems. In our view, this is just a first step
toward a unifying framework for adaptive black-box optimization and sampling.
Exploring key ideas in both communities might be of mutual advantage. Besides
our own work, a number of attempts have already been made in this direction.
In statistics, Liang and Wong introduced an Evolutionary Monte Carlo scheme,
a MCMC method that uses move sets from evolutionary algorithms [20, 21]. Sev-
eral authors have recently refined such schemes [22, 23]. A combined approach
to sampling and optimization is proposed in [24]. In the black-box optimization
community, Vrugt and co-workers used the AM algorithm as part of an ensemble
of search/sampling methods for improving multi-objective optimization [25].

We also argue that ergodicity proofs for the AM algorithm [14] and other adap-
tive MCMC schemes [26] may contain valuable ideas and techniques that can be
exploited in convergence proofs of CMA-like schemes.
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