
10401 – Extended Abstract

The Task-State Coordination Pattern,
with applications in Human-Robot-Interaction

– Dagstuhl Seminar –

Ingo Lütkebohle1, Julia Peltason1, Britta Wrede1 and Sven Wachsmuth1,2

1 Bielefeld University, Applied Informatics Group
Postfach 100 131, 33501 Bielefeld, Germany

{iluetkeb,jpeltaso,bwrede}@techfak.uni-bielefeld.de
2 Bielefeld University, Central Lab Facilities
Postfach 100 131, 33501 Bielefeld, Germany

swachsmu@techfak.uni-bielefeld.de

Abstract. We consider interaction a powerful enabling technology for
robots in human environments. Besides taking commands or reporting,
many other uses, such as interactive learning, are already being explored.
However, HRI also poses systems engineering challenges that may hinder
its adoption. To address these, we advocate a general coordination pat-
tern for task execution: The Task-State Pattern. Crucially, it separates
interaction coordination from task-level control, thus enabling indepen-
dent, but integrated, development.
In the pattern, tasks are represented using both a general, re-usable task
coordination model and a task-type dependent specification. We have
introduced a coordination model rich enough to support a powerful user
experience, but still general enough to accomodate a variety of tasks,
thus simplifying architecture and integration. Furthermore, because it is
re-used in many places, it provides an attractive target for tool support.

Keywords. human-robot-interaction, software architecture, design pat-
tern, dialog

1 Introduction

For robots in human environments, interaction with the humans can be both a
necessity and an aid mechanism. Generally accepted as necessary are the ability
to take commands from a human and to report at least the success of a task,
with more detail often a help. On top of that, interaction can also be an aid, i.e.
when the robot is missing information or cannot do the task alone.

From a software engineering point of view, such interaction requires that
there is a detailed exchange of information between the interaction management
parts and those parts that are carrying out tasks. At the very least, commands
and results must be communicated back and forth. However, to keep changes to

Dagstuhl Seminar Proceedings 10401 
Learning, Planning and Sharing Robot Knowledge for Human-Robot Interaction 
http://drops.dagstuhl.de/opus/volltexte/2011/2931



2 I. Lütkebohle, J. Peltason, B. Wrede, S. Wachsmuth

the various parts from interfering and to generally facilitate effective develop-
ment, it is desirable to keep the different parts of a system independent as much
as possible. These somewhat conflicting goals can be reconciled through the use
of modules with well-defined interfaces [1]. In robotics, this approach is already
widely applied for middleware frameworks in robotics (cf. [2, 3]) and has been
suggested as a good approach for general system construction [4, 5].

The Task-State pattern represents such an interface, to provide a general
coordination mechanism for robot tasks. It is a proven engineering practice which
has been extracted through repeated analysis, design and application steps. It
and the proposals it is based on are in wide use in a diverse range of robotic
systems [6, 7, 8, 9, 10, 11].

In the following, we will shortly introduce an example scenario encompassing
HRI and manipulation and then present the pattern in this context. Afterwards,
references to further case studies will be given.

2 The “Curious Robot” scenario

The “Curious Robot”, shown in figure 1, is an experiment in mixed-initiative,
multi-modal interaction. It integrates a bimanual manipulator and a humanoid
robot torso into a single software system, with the former responsible for manip-
ulation (e.g., picking up objects) and the latter for interaction (e.g. gaze feedback
on the attended object). See http://www.youtube.com/watch?v=D8Q8Udh7CMg

for an interaction demo.

Fig. 1. Interaction example, the human demonstrates a grip.

The basic interaction is that the system asks the human for label (e.g. “What
is that? [pointing]”) and grip information about the objects and then puts them

http://www.youtube.com/watch?v=D8Q8Udh7CMg


10401 – Extended Abstract – The Task-State Coordination Pattern 3

away. Throughout its interactions, it reports on what it is doing (e.g. “I am now
going to pick up the apple”). This simple script leads to an intricate interaction
mainly because of two issues: Firstly, the human can interject at any point, to
stop or restart tasks, inquire about the information the system has, add or re-
move objects, and so on. Secondly, speech recognition is limited and clarification
dialogs can occur at any point. Full details on the system are available in [11].

The system supports a number of “basic” tasks, which are those that are
directly implemented and can merely be configured. “Compound” tasks, are
created by sequencing a particular configuration of basic tasks. Example basic
tasks include text-to-speech output, moving hand and arm and gazing at some-
thing. Example compound tasks include asking for an object label while pointing
and looking at the object, as well as picking up an object and putting it away
while explaining each step, so that the user stays informed.

3 The Task-State Coordination Pattern

The central idea of the Task-State pattern is to separate the state from the con-
figuration of a task. The state, then, is described by a finite-state machine (FSM)
that is the same for all tasks. While the FSM may in principle by arbitrarily
complex, we have found that the one depicted in figure 2(a) is the simplest useful
FSM, whereas the one in 2(b) supports all the distinctions we have needed for
several complex systems.

initiated runningaccepted

done

already done

rejected

cancelled

failed

(a) Basic Task State Machine

initiated running

update requested

cancel requested

accepted

done

already done

rejected

cancelled

failed

accept, rejectupdate

intermediate result

cancel
cancel failed

(b) General Task State Machine

Fig. 2. Example Task-State Machines

For coordination, only changes in state are relevant. The Task-State pattern
requires, firstly, that each such change causes an event notification, and sec-
ondly, that the event notification includes the current configuration. Individual
components may thus use the configuration easily.



4 I. Lütkebohle, J. Peltason, B. Wrede, S. Wachsmuth

3.1 Example of Use

To see how the event notifications are applied to coordinate task execution,
figure 3 presents a full example. In it, each arrow represents an event notification
and the first word of the notification label refers to the new task state.

Hand
Control

Text-To-
Speech

Arm
Control

PlannerSpeech
Recog

Dialog HSM

powergrasp
aborted

15: 

powergrasp
complete

24: 

complete
say

10: 

complete say23: 

complete
say

29: 

complete
pregrasp

9: 

pregrasp 
complete

21: 

postgrasp
complete

26: 

plan
trajectory

7: 

replan18: 

trajectory8: 

trajectory20: 

receive
PoseCorrection

12: 

initiate Grasp3: 

initiate say
(grasping)

5: 

update Grasp13: 

initate say
(ok, more left)

19: 

initiate say
(ok, done)

28: 

initiate
GraspInteraction

1: 

complete
GraspInteraction

30: 

accept GraspInteraction2: 

accept Grasp4: start
pregrasp

6: 

start
powergrasp

11: 

cancel
powergrasp

14: 

start 
pregrasp

16: 

updated Grasp17: 

start 
powergrasp

22: 

start
postgrasp

25: 

Grasp complete27: 

Fig. 3. Verbal interaction with grasping

In the example, we would like to emphasize two main points. Firstly, there
are basically two independent sub-systems present: The interaction sub-system
(speech recognition, text-to-speech, dialog) on the left-hand side, and motor
control on the right hand side. Within each sub-system, tasks are only initiated



10401 – Extended Abstract – The Task-State Coordination Pattern 5

and completed or aborted. Between the sub-systems, however, there are also
“update” notifications. The reason for this addition is so that the context of
these sub-system can be preserved during coordination.

Secondly, please note the close interaction within the sub-systems, coordi-
nated by a much simpler interaction between sub-systems. This results in loose
coupling between sub-systems, an architecturally desirable property. Figure 4,
which depicts the information relationships, also visualizes this fact.

Level 1 : Hierarchical
State Machine

Level 2 : Hierarchical
State Machine

 : Headset
Microphone

 : Robot Self
Image

 : Speech
Recognition

 : Dialog
Manager

 : Speech
Analysis

 : Text to
Speech

 : Dialog
Manager

 : Frame
Capture

Level 4 : Hierarchical
State Machine

Level 3 : Hierarchical
State Machine

 : Information
Gatherer

 : Visual
Saliency

 : Object
Detection

 : Arm
Control

 : Hand
Control

 : Arm
Control

 : Hand
Control

 : Hand
Control

 : Region
Fusion

 : Arm
Control

 : Arm
Control

 : Arm
Control

 : Hand
Control collision detection

hardware driver

forward model

trajectory plan

Fig. 4. Sub-system interaction. Each column represents a single sub-system.
Only two links exists between them, keeping coupling to a minimum.

4 Conclusions

We have shortly summarized the Task-State pattern, a general coordination
mechanism focused on a separation of concerns to facilitate integration. A paper
on the dialog manager of the system will be part of the proceedings and more
details on the pattern in general are currently in press [12].



Bibliography

[1] Parnas, D.L.: On the criteria to be used in decomposing systems into mod-
ules. Commun. ACM 15 (1972) 1053–1058

[2] Utz, H., Sablatnog, S., Enderle, S., Kraetzschmar, G.: Miro - middleware for
mobile robot applications. Robotics and Automation, IEEE Transactions
on 18 (2002) 493–497

[3] Metta, G., Fitzpatrick, P., Natale, L.: Yarp: Yet another robot platform.
International Journal of Advanced Robotic Systems 3 (2006) 43–48

[4] Stewart, D.B., Khosla, P.K.: Rapid development of robotic applications
using component-based real-time software. Intelligent Robots and Systems,
IEEE/RSJ International Conference on 1 (1995) 465+

[5] Brugali, D., Brooks, A., Cowley, A., Côté, C., Domı́nguez-Brito, A.,
Létourneau, D., Michaud, F., Schlegel, C.: Trends in component-based
robotics. In Brugali, D., ed.: Software Engineering for Experimental
Robotics. Volume 30 of Springer Tracts in Advanced Robotics. Springer
Berlin Heidelberg, Berlin, Heidelberg (2007) 135–142

[6] Lefebvre, D.R., Saridis, G.N.: A computer architecture for intelligent ma-
chines. In: Proceedings of IEEE International Conference on Robotics and
Automation. Volume 3. (1992) 2745–2750

[7] Chatila, R.: Deliberation and reactivity in autonomous mobile robots.
Robotics and Autonomous Systems 16 (1995) 197–211

[8] Simmons, R., Apfelbaum, D.: A task description language for robot control.
In: Proc. of Conference on Intelligent Robotics and Systems. (1998)

[9] Wrede, S., Hanheide, M., Wachsmuth, S., Sagerer, G.: Integration and
coordination in a cognitive vision system. In: International Conference on
Computer Vision Systems (ICVS), St. Johns University, Manhattan, New
York City, USA, IEEE (2006)

[10] Hanheide, M., Sagerer, G.: Active memory-based interaction strategies for
learning-enabling behaviors. In: International Symposium on Robot and
Human Interactive Communication (RO-MAN), Munich (2008)

[11] Lütkebohle, I., Peltason, J., Schillingmann, L., Elbrechter, C., Wrede, B.,
Wachsmuth, S., Haschke, R.: The Curious Robot - Structuring Interactive
Robot Learning. In: International Conference on Robotics and Automation,
Kobe, Japan, Robotics and Automation Society, IEEE (2009)

[12] Lütkebohle, I., Philippsen, R., Pradeep, V., Marder-Eppstein, E.,
Wachsmuth, S.: Coordination and Control for Complex Robot Software Sys-
tems: The Task-State Pattern. Journal of Software Engineering for Robotics
(in press) submitted.


	10401 – Extended AbstractThe Task-State Coordination Pattern,with applications in Human-Robot-Interaction– Dagstuhl Seminar –
	Ingo Lütkebohle, Julia Peltason, Britta Wrede and Sven Wachsmuth 



