
Report on the Dagstuhl Seminar on

Software Engineering for Self-Adaptive Systems

Rogério de Lemos1, Holger Giese2, Hausi A. Müller3, and Mary Shaw4

1 University of Kent, UK
r.delemos@kent.ac.uk

2 Hasso Plattner Institute, University of Potsdam, Germany
holger.giese@hpi.uni-potsdam.de

3 University of Victoria, Canada
hausi@cs.uvic.ca

4 Carnegie Mellon University, USA
mary.shaw@cs.cmu.edu

Abstract. Softwares ability to adapt at run-time to changing user needs,
system intrusions or faults, changing operational environment, and re-
source variability has been proposed as a means to cope with the com-
plexity of todays software- intensive systems. Such self-adaptive systems
can configure and reconfigure themselves, augment their functionality,
continually optimise themselves, protect themselves, and re- cover them-
selves, while keeping most of their complexity hidden from the user and
administrator. In this paper, we present research road map for software
engineering of self- adaptive systems focusing on four views, which we
identify as essential: design spaces, verification and validation, processes,
and decentralisation.

Keywords: software engineering, self-adaptive systems, design spaces,
verification and validation, processes, decentralization

1 Introduction

The simultaneous explosion of information and integration of technology to-
gether with the continuous evolution from software intensive systems to systems
of systems to ultra-large-scale (ULS) systems requires new and innovative ap-
proaches for building, running and managing software systems [ULS 2006]. A
consequence of this continuous evolution is that software systems are expected to
become more versatile, flexible, resilient, dependable, robust, continuously avail-
able, energy-efficient, recoverable, customisable, self-healing, configurable, or
self-optimising by adapting to changing requirements and contexts/environments
[Roadmap 2008]. One of the most promising approaches to achieving such prop-
erties is to equip software systems with self-managing capabilities using self-
adaptation mechanisms.

Research on the theory and practice of self-adaptation is highly interdisci-
plinary, and it draws ideas and solutions from many diverse fields, such as control

Dagstuhl Seminar Proceedings 10431 
Software Engineering for Self-Adaptive Systems 
http://drops.dagstuhl.de/opus/volltexte/2011/3088

1



engineering and dynamical systems, automation and instrumentation, machine
learning and planning, fault-tolerance and reactive systems, and many others.
The applications of self-adaptation also span a wide range: autonomic computing
[Huebscher 2008], dependable computing, autonomic communications and net-
works [Dobson 2006], mobile ad hoc networks, sensor networks, ubiquitous com-
puting, computing systems management [Hellerstein 2004], biologically-inspired
computing, user-interface customisation, embedded computing, service-oriented
architectures, web-service composition, embedded systems, mechatronics, mobile
and autonomous robots, multi-agent systems, to financial systems.

The seminar focused on software engineering aspects of building self-adaptive
and self-managing systems. The topic of self-adaptive systems has been studied
independently within the different research areas of software engineering, includ-
ing requirements engineering, modelling, architecture and middleware, event-
based, component-based and knowledge-based systems, testing, verification and
validation, as well as software maintenance and evolution [Dagstuhl 2008]. Re-
cently several workshops have emerged to bring these independent efforts to-
gether by concentrating on the software engineering aspects of self-adaptive sys-
tems: WOSS (Workshop on Self-Healing Systems), WADS (Workshop on Ar-
chitecting Dependable Systems), DEAS (Design and Evolution of Autonomic
Application Software), SEAMS (Software Engineering for Self-Adaptive and Self-
Managing Systems), and Dagstuhl Seminar 08031 on Software Engineering for
Self-Adaptive Systems [Dagstuhl 2008].

The flexible nature of software provides an ideal platform for self-adaptation.
However, the proper realisation of the self-adaptation functionality remains a
formidable intellectual challenge. In the long run, we need to establish the foun-
dations that enable the systematic development of future generations of self-
adaptive systems. Therefore the current achievements have to be integrated
into a more comprehensive overall research effort from which generic approaches
should be devised. Building self-adaptive software systems cost-effectively and
in a systematic and predictable manner is also a major engineering challenge.

The goal of this seminar was to bring together the leading software engineer-
ing experts and other distinguished experts from related fields on self-adaptive
systems to discuss the fundamental principles, models, methods, techniques,
mechanisms, state-of-the-art, and challenges for engineering self-adaptive soft-
ware systems.

2 Topics of discussion

The aim of the Seminar was not so much to be comprehensive concerning the
topics associated with software engineering for self-adaptive software systems,
but to be focused on key and challenging topics.

– Design spaces: The development of complex software involves models at
different levels of granularity. Also all approaches to self-adaptation which
plan the effect of changes ahead of their application require models as a

2



means for prediction. Similarly, approaches to estimate the quality of a
solution at development-time also needs models to evaluate the quality of
the adaptation. Following different trends these models may be oriented to-
wards control theory featuring related analysis capabilities [Hellerstein 2004]
or support a more architecture centric view [Kramer 1996], [Kramer 2007].
Other relevant aspects are their partial or global character as well as the
capability to adjust the models to observations of the system and environ-
ment to also address un-anticipated dynamic changes. Therefore, the ques-
tion which models are required for the different development steps of self-
adaptive systems is of paramount importance. Design spaces represent the
set of design alternatives as decisions to be made, along with the alternatives
for each decision and criteria that guide the choice. The decisions are often
organised hierarchically.

– Verification and validation: The vision of self-adaptive systems is promis-
ing but also risky. Giving systems the freedom to self-adapt at run-time ob-
viously weakens our capabilities to assure their proper operation. Therefore,
an important question is how much run-time assurance is needed in addition
and above design-time assurance. Moreover, it is crucial to identify proper-
ties which are only assessable at run-time (e.g., stability) and thus irrelevant
in the contact of traditional static systems. What are the validation require-
ments associated with each type of adaptation? How can these obligations
become a visible part of the development process?

– Processes: Activities such as selecting a single execution strategy which are
traditionally handled at development-time may be deferred to run-time in
a self-adaptive system to gain more flexibility and the capability to adapt
to the current situation at run-time. It seems important to identify which
activities are often deferred to run-time as well as for which activities this
seem still not possible respectively useful.

– Decentralisation: Self-adaptive systems can be viewed from two perspec-
tives, either individual systems or cooperative systems. Individual self-adaptive
systems evaluate their own global behaviour and change it when the eval-
uation indicates that they are not accomplishing what they were intended
to do, or when better functionality or performance is possible realising self-
adaptation. In a centralised fashion. such systems typically operate with an
explicit internal representation of themselves and their global goals. On the
other hand, self-adaptive systems can be composed of a large number of
components that interact according to local and typically simple rules in a
decentralised manner. The global behaviour of the system emerges from these
local interactions, and it is difficult to deduce properties of the global system
by studying only the local properties of its parts. Such systems do not nec-
essarily use internal representations of global properties or goals. These two
perspectives of self-adaptive system represent two extremes going from full
centralized to a fully decentralized. In practice, there is clearly a continuum
of designs and implementations where both system types are intertwined to
achieve their behavioural goal.

3



3 Outcomes

The two concrete outcomes from this Seminar will be a new roadmap paper
and a new book. The roadmap paper, which will follow the same format of the
previous paper will be structured according to the new topics to be identified
during the seminar, namely: design spaces, processes, verification and validation,
and decentralisation. For each topic, the objective is to summarise the current
state-of-the-art, discuss its limitations, and identify future challenges for the
field.

The book will contain state-of-the-art contributions from participants of the
seminar and some invited contributions. In addition to these contributions, the
roadmap paper will be the introductory chapter of the book, which should be
followed by four chapters containing extended versions of the topics discussed in
the roadmap paper. The book will be published by Springer as Lecture Notes in
Computer Science volume on their State-of-the-Art series.

References

[Dagstuhl 2008] Schloss Dagstuhl Seminar 08031. Software Engineering for Self-
Adaptive Systems, Wadern, Germany (2008) http://www.dagstuhl.de/08031/

[Dobson 2006] Dobson, S., Denazis, S., Fernndez, A., Gaiti, D., Gelenbe, E., Mas-
sacci, F., Nixon, P., Saffre, F., Schmidt, N., Zambonelli, F.: A Survey of Autonomic
Communications. ACM Transactions on Autonomous and Adaptive Systems (TAAS)
1(2):223-259 (2006)

[Hellerstein 2004] Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Con-
trol of Computing Systems. John Wiley & Sons (2004)

[Huebscher 2008] Huebscher, M.C., McCann, J.A.: A Survey of Autonomic
Computing-Degrees, Models, and Applications. ACM Computing Surveys, 40 (3):7:1-
28 (2008)

[Kramer 1996] Kramer, J., Magee, J.: Dynamic Structure in Software Architectures.
ACM SIGSOFT Software Engineering Notes 21(6):3-14 (1996)

[Kramer 2007] Kramer, J., Magee, J.: Self-managed Systems: An Architectural Chal-
lenge. In: Future of Software Engineering (FoSE 2007), pp. 259-268, IEEE Computer
Society, Washington, DC, USA (2007)

[Roadmap 2008] Cheng, B.H.C., et al: A Research Roadmap: Software Engineering for
Self-Adaptive Systems. Schloss Dagstuhl Seminar 08031 Report on Software Engi-
neering for Self-Adaptive Systems, Wadern, Germany, 12 pages (2008)

[ULS 2006] * Northrop, L., Feiler, P., Gabriel, R., Goodenough, J., Linger, R.,
Longstaff, T., Kazman, R., Klein, M., Schmidt, D., Sullivan, K., Wallnau, K.:
Ultra-Large-Scale SystemsThe Software Challenge of the Future. Technical Re-
port, Software Engineering Institute, Carnegie Mellon University, 134 pages (2006)
http://www.sei.cmu.edu/uls

4




