
Dagstuhl Seminar 10441 Final Report

Exact Complexity of NP-Hard Problems

31 October � 5 November 2010

Table of Contents

1 Organization 1

2 Executive summary 2

2.1 Background 2
2.2 The meeting 3

3 Participants and group photo 5

4 Abstracts of presentations 7

5 Open problems 15

1 Organization

The seminar was organized by:
Thore Husfeldt, Lund University, SE and ITU Copenhagen, DK, Thore.Husfeldt@cs.lth.se
Dieter Kratsch, Université Paul Verlaine�Metz, FR, kratsch@univ-metz.fr
Ramamohan Paturi, University of California, San Diego, US, paturi@cs.ucsd.edu
Gregory Sorkin, London School of Economics, London, GB, G.B.Sorkin@lse.ac.uk

Abstracts and open problems were compiled and edited by
Serge Gaspers, Vienna University of Technology, Vienna, AT, gaspers@kr.tuwien.ac.at,
who also assisted in preparation of this �nal report.

We are grateful to the Dagstuhl personnel for their helpfulness and expertise, making the
meeting smooth-running, pleasurable, productive, and easy to organize.
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2 Executive summary

2.1 Background

A decade before NP-completeness became the lens through which Computer Science views
computationally hard problems, beautiful algorithms were discovered that are much better
than exhaustive search, for example Bellman's 1962 dynamic programming treatment of the
Traveling Salesman problem and Ryser's 1963 inclusion�exclusion formula for the permanent.

Today we know that all NP-hard problems are unlikely to admit polynomial-time algo-
rithms, yet NP-hard problems must be solved, in some way, for everything from manufactur-
ing and supply-chain optimization to railroad timetabling. Approaches include approximation
algorithms, heuristics, average-case analysis, and exact exponential-time algorithms: all are
essential. While all NP-complete problems are equivalent from the polynomial-time perspec-
tive, their exponential-time properties vary widely. Which problems are easiest or hardest?
What are the promising algorithmic techniques? What are the connections with parametrized
complexity? How fast an algorithm can we �nd? What about complexity lower bounds?

Work addressing such questions, both from the algorithmic and complexity theoretic sides,
has become known as exact complexity. Despite signi�cant progress, the area is still fairly
new and many fundamental problems remain open. Where the approximation algorithms
�eld, for example, has unifying algorithmic techniques such as LP rounding and semide�nite
programming, and hardness techniques from probabilistically checkable proofs and the Unique
Games conjecture, much exact algorithms work is still speci�c to a particular NP-complete
problem: powerful uni�ed techniques are just emerging.

Exciting new results and directions have been established by scientists on several con-
tinents, with important contributions coming from young researchers such as Williams and
Traxler. The purpose of this workshop is to accelerate developments in this late-blooming
�eld. Below, we outline several new results and promising directions.

The Tutte polynomial of an n-vertex, m-edged graph can trivially be evaluated in time
O∗(2m), but no vertex-parameterized algorithm is obvious. The Potts (q-coloring) partition
function can trivially be evaluated in time O∗(qn), but it is not obvious if one can remove
the dependence on q. The Fortuin�Kasteleyn model from statistical physics generalizes both,
and a breakthrough result of Björklund, Husfeldt, Kaski, and Koivisto [FOCS 2006, STOC
2007, FOCS 2008] shows how to evaluate it using the inclusion�exclusion method in time
O∗(2n). It is an intriguing question as to how far these techniques could be extended.

Recently, the color-coding technique of Alon, Yuster, and Zwick [JACM 1995] has been
extended by introducing algebraic structures that yield faster �xed parameter tractable al-
gorithms. Koutis [ICALP 2008] uses �vector coding� for a randomized O∗(23k/2) algorithm
for the k-Path problem, and Williams [IPL 2009] improves this to O∗(2k). Such algorithms
from group algebra are a promising direction for further exploration.

Branch-and-reduce is one of the most frequently used methods for solving NP-hard prob-
lems, but current analyses of such algorithms may be overly pessimistic. Fomin, Grandoni
and Kratsch [ICALP 2005, SODA 2006] used a measure and conquer framework to estab-
lish simple and fast algorithms to solve the Minimum Dominating Set and the Maximum
Independent Set problem. By now measure and conquer analysis has had an enormous im-
pact. This and related methods, Eppstein's quasiconvex analysis [SODA 2004], Scott and
Sorkin's linear programming method [Random 2005], and Gaspers and Sorkin's convex pro-
gramming method [SODA 2009], have become indispensable, but a need remains for further
improvements.

Faster algorithms, notably for Maximum Independent Set, have resulted from computer-
produced graphical reductions and case analysis. Can these automated techniques be put
on a more general theoretical level, and improved? Can similar automation be applied to
logic-based branching rules such as the �clause learning� of Kulikov and Kutzkov [CSR 2007]?
What about lower bounds on such local methods?
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Exponential-time and other approaches may be combined. Scott and Sorkin's [CPC 2006]
average-case analysis of an exponential-time algorithm shows that Max 2-CSP is solvable in
expected linear time on random constraint graphs below the giant-component threshold. It
would be interesting to obtain similar results for other problems. Cygan, Kowalik, Pilipczuk
and Wykurz [2008] explore exponential-time approximation algorithms trading o� the running
time and approximation ratio for various problems, an approach well worth further investi-
gation. Hybrid algorithms, introduced by Vassilevska, Williams and Woo [SODA 2006], are
exempli�ed for Bandwidth: the fastest exact algorithm known takes time O∗(5n) (O∗(4.383n)
as of April 2010) and the best polynomial-time approximation ratio is roughly O(log3 n), but
there is a hybrid algorithm that, depending on the input, produces either the exact minimum
in time roughly O∗(4n) or an O(log2.5 n) approximation in polynomial time.

Some other approaches merit mention. Horowitz and Sahni's O∗(2n/2) Knapsack algo-
rithm [JACM 1974] is an early example of the approach of reducing a hard problem to one
that is easy but exponentially large. Williams' O∗(1.74n) algorithm for Max 2-CSP [ICALP
2004] is the only nontrivial algorithm known for dense instances. Koivisto's ring extension
of this algorithm [IPL 2006], the Tutte and k-Path work previously mentioned, and Scott
and Sorkin's ring extension of other Max 2-CSP algorithms [TALG 2009] show the power of
algebraic approaches.

Despite these algorithmic successes, there may be limits to what is possible. Impagli-
azzo, Paturi and Zane [FOCS 1998] initiate a complexity theory of exact algorithms, using
subexponential-time Turing reductions. They introduce the Exponential-Time Hypothesis
(ETH), viz., that the best exact algorithm for 3-SAT has exponential complexity 2cn where
c > 0. Assuming ETH they prove that the best exponent sequence ck for k-SAT must be
an increasing sequence [CCC 1999]. Using similar techniques, Traxler [IWPEC 2008] shows
that for 2-CSPs over k-valued variables, assuming ETH, any algorithm's running time must
depend strongly on k; this is in sharp contrast to the earlier-mentioned result that k-coloring
can be solved in time O∗(2n), independent of k. These results call for a vigorous investigation
of the complexity-theoretic limitations of exact algorithms.

2.2 The meeting

The meeting was attended by 46 researchers, the maximum possible modulo some last-minute
cancellations. The organizers are grateful to all who came, and regret that � due to a
gratifyingly high acceptance rate � others who would have contributed could not be invited.
The participants came from around the globe, predominantly from Europe as usual for this
�eld, but this time also with a good showing from the US.

AT CZ DE DK FI FR GB IL IN IT JP NL NO PL RU SE US

1 2 7 2 2 4 3 1 1 1 2 3 3 1 2 2 9

Comparing with the Seminar 08431 on Moderately Exponential Time Algorithms held
in October 2008, along with exponential-time algorithms this meeting had stronger repre-
sentation in �xed-parameter tractability and in computational complexity, both of which
furthered a sense of the �eld cementing into a cohesive and substantial discipline. Paturi
opened the technical proceedings with a survey of the complexity background, in particular
various exponential time hypotheses. Dell introduced an exponential time hypothesis for
counting problems and Lokshtanov introduced another hypothesis about the complexity of
algorithms for Satis�abilty.

Structurally, most talks were half an hour long, with exceptions made for a handful of
hour-long talks, and participant feedback during and after the meeting indicates that this
was a good choice. The after-lunch period was left free for informal discussions and small
working groups, with talks again between 4pm and dinnertime, and participants liked this as
well. Rather than having a single, massive, open problem session, the meeting included half-
hour long open problem sessions right before dinner on every day except Wednesday. These
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sessions brought out many interesting yet approachable problems (see the Open Problems
section of this report), a tribute to the state of the �eld or the openness of the participants.
Wednesday included the traditional outing but with a plethora of options: participants could
hike, run, or bike (all in the rain; that was not optional), and could go on afterward to a wine
tasting and dinner or enjoy a quiet evening at the Schloss.

Talks included a wide range of concrete results on NP-hard problems, for example a nearly
optimal algorithm for listing all maximal cliques in a graph (Eppstein, Lö�er, Strash) and
a proof of �xed-parameter tractability (FPT) of the multi-way cut problem (Marx, Razgon),
drawing upon and extending techniques such as those discussed in the Background section
above. One result that stood out (Lokshtanov, Marx, Saurabh) was that known treewidth-
parametrized algorithms for Independent Set, Dominating Set, Max Cut, q-Coloring, Odd
Cycle Transversal, and Partition Into Triangles are all essentially optimal, assuming a hy-
pothesis about the complexity of Satis�ability; the proof is based on small-treewidth gadget-
based reductions of boolean formulas to these problems. A complete presentation was given
of the ideas in the recent breakthrough on the Hamilton Cycle problem (Björklund). For
an n-vertex graph, Hamilton Cycle has a naive algorithm running in time n!, and can be
solved in time O∗(2n) using dynamic programming (Bellman 1962, Held and Karp 1962),
but has resisted further improvement. Björklund showed an elegant algorithm for bipartite
graphs running in time O∗(2n/2), and how to turn it into a general algorithm running in
time O∗(1.657n). The algorithm takes determinants over an appropriate algebra, building on
Koutis' and Williams' algebraic sieving methods for k-path.

Several open problems from previous Dagstuhl seminars, notably Seminar 08431, were
resolved. Johan van Rooij had asked for a Capacitated Dominating Set algorithm faster
than 2n, and Mathieu Liedlo� presented one with running time O∗(1.8463n). Mikko Koivisto
had asked a related, broad question about reducibility among problems for which the best
known algorithms take time 2n: if one can be solved faster, can others? While not explicitly
answering this question, the results above by Lokshtanov, Saurabh, and Marx bear on it by
showing that 2n is probably optimal for some of these problems. In Woeginger's famous 2003
survey of exact algorithms, the �rst open problem was to �nd algorithms faster than 2n for
Hamilton cycle and the traveling salesman problem; Björklund's algorithm satis�es the �rst
challenge.

Seminar participants can visit the meeting's wiki at http://tinyurl.com/355og64 and
Thore Husfeldt has blog entries on the meeting's subject and the process of organizing it
at http://tinyurl.com/2vbxdx6 and http://tinyurl.com/39l2axz.

http://tinyurl.com/355og64
http://tinyurl.com/2vbxdx6
http://tinyurl.com/39l2axz
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4 Abstracts of presentations

4.1 Determinant Sums (and Labeled Walks) for Undirected Hamil-
tonicity

Andreas Björklund (Lund University, SE)

We present a Monte Carlo algorithm for Hamiltonicity detection in an n-vertex undirected
graph running in O∗(1.657n) time. To the best of our knowledge, this is the �rst super-
polynomial improvement on the worst case runtime for the problem since the O∗(2n) bound
established for TSP almost �fty years ago (Bellman 1962, Held and Karp 1962). It answers
in part the �rst open problem in Woeginger's 2003 survey on exact algorithms for NP-hard
problems.

For bipartite graphs, we improve the bound to O∗(1.414n) time. Both the bipartite and
the general algorithm can be implemented to use space polynomial in n.

We combine several recently resurrected ideas to get the results. Our main technical
contribution is a new reduction inspired by the algebraic sieving method for k-Path (Koutis
ICALP 2008, Williams IPL 2009). We introduce the Labeled Cycle Cover Sum in which we
are set to count weighted arc labeled cycle covers over a �nite �eld of characteristic two. We
reduce Hamiltonicity to Labeled Cycle Cover Sum and apply the determinant summation
technique for Exact Set Covers (Björklund STACS 2010) to evaluate it.

We also present an alternative algorithm by B., Husfeldt, Kaski, and Koivisto 2010, based
on labeled walks which we feel is even simpler. We will show how both techniques can be
altered to solve for the parametrized k-Path problem in poly(n)1.657k time.

Keywords: Hamiltonian Cycle

Full Paper: http://arxiv.org/abs/1008.0541

See also: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer
Science

4.2 An exact algorithm for Intervalizing k-colored graphs

Hans L. Bodlaender (Utrecht University, NL)

The Intervalizing k-colored graphs problem has as input a properly vertex-colored graph G,
and asks if G is subgraph of a properly colored interval graph. This problem is known to
be NP-complete, even if the number of colors is four. Here, we present an exact algorithm
for the problem, with a somewhat curious running time, which is sub-exponential: it uses
O(2n/log

1−ε
) time, for all ε > 0. The algorithm is a simple modi�cation on a Held-Karp-style

algorithm, incorporating an isomorphism test on certain subgraphs.

Keywords: Interval graphs, subexponential time, interval completion

4.3 Isomorphism of hypergraphs of low rank in sub-exponential time

Paolo Codenotti (University of Chicago, US)

We give an algorithm to decide isomorphism of hypergraphs of rank k in time exp(Õ(k2
√
n)),

where n is the number of vertices. (The rank is the maximum size of edges; the tilde refers
to a polylogarithmic factor.) The case of bounded k answers a 24-year-old question and
removes an obstacle to improving the worst case-bound for Graph Isomorphism testing. The
best previously known bound, even for k = 3, was Cn (Luks 1999).

Keywords: Hypergraph Isomorphism, Groups, Sub-exponential time

http://arxiv.org/abs/1008.0541
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Joint work of: Babai, Laszlo; Codenotti, Paolo;

See also: László Babai and Paolo Codenotti, Isomorphism of hypergraphs of low rank in
moderately exponential time, FOCS 2008.

4.4 On belief propagation guided decimation for random k-SAT

Amin Coja-Oghlan (University of Warwick, GB)

Random k-SAT instances are challenging benchmarks for SAT-solving algorithms. Physicists
have put forward an algorithm called Belief Propagation guided decimation that harnesses
the Belief Propagation technique from AI in order to construct satisfying assignments. Ex-
periments indicate that this algorithm far outperforms other SAT solvers such as Walksat or
zCha� for k = 3, 4, 5. I am going to present the �rst rigorous analysis of BP guided deci-
mation, showing that for larger k (the basic version of) this algorithm does not outperform
other, simpler ones.

Keywords: Belief Propagation, random k-SAT, statistical mechanics

4.5 The stubborn problem is stubborn no more

Marek Cygan (University of Warsaw, PL)

We present a polynomial time algorithm for the 3-Compatible Colouring problem, where we
are given a complete graph with each edge assigned one of 3 possible colours and we want
to assign one of those 3 colours to each vertex in such a way that no edge has the same
colour as both of its endpoints. Consequently we complete the proof of a dichotomy for the
k-Compatible Colouring problem.

The tractability of the 3-Compatible colouring problem has been open for several years
and the best known algorithm prior to this paper is due to Feder et al. [SODA'05], which is
a quasipolynomial algorithm with a nO(logn/ log logn) time complexity.

Furthermore our result implies a polynomial algorithm for the Stubborn problem which
enables us to �nish the classi�cation of all List Matrix Partition variants for matrices of size
at most four over subsets of {0, 1} started by Cameron et al. [SODA'04].

Keywords: Compatible colouring, list matrix partition, stubborn problem

Joint work of: Cygan, Marek; Pilipczuk, Marcin; Pilipczuk, Michal; Wojtaszczyk,
Onufry

4.6 Listing all maximal cliques in sparse graphs in near-optimal time

David Eppstein (Univ. California - Irvine, US)

The degeneracy of an n-vertex graph G is the smallest number d such that every subgraph
of G contains a vertex of degree at most d. We show that there exists a nearly-optimal
�xed-parameter tractable algorithm for enumerating all maximal cliques, parametrized by
degeneracy. To achieve this result, we modify the classic Bron�Kerbosch algorithm and show
that it runs in time O(dn3d/3). We also provide matching upper and lower bounds showing
that the largest possible number of maximal cliques in an n-vertex graph with degeneracy d
(when d is a multiple of 3 and n ≥ d + 3) is (n − d)3d/3. Therefore, our algorithm matches
the Θ(d(n− d)3d/3) worst-case output size of the problem whenever n− d = Ω(n).

Keywords: Clique, backtracking, degeneracy, worst-case optimality

Joint work of: Eppstein, David; Lö�er, Maarten; Strash, Darren
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Full Paper: http://arxiv.org/abs/1006.5440

See also: To appear at ISAAC 2010

4.7 Parameterized Measure and Conquer: a simple example

Henning Fernau (Universität Trier, DE)

There have been quite some discussions how and under which circumstances M&C techniques
can be employed.

Most published examples are of a quite intricate nature.
We present a relatively simple example for parameterized M&C in this talk, considering

the problem of �nding a vertex cover of size at most k in a subcubic graph.
There has been quite some work on this particular problem already.
Our proposed algorithm does not quite match the fastest ones, but it might serve as a

kind of textbook example for using M&C within the analysis of parameterized algorithms:
both the algorithm and its analysis are quite simple compared to published approaches.

Keywords: Parameterized algorithms; vertex cover; measure and conquer

Joint work of: Binkele-Raible, Daniel; Fernau, Henning;

4.8 A New Upper Bound for 3-SAT

Kazuo Iwama (Kyoto University, JP)

This talk gives a new randomized algorithm which solves 3-SAT in time
O(1.32113n). The previous best bound is O(1.32216n) due to Rolf (J. SAT, 2006). The
new algorithm uses the same approach as Iwama and Tamaki (SODA 2004), but exploits the
non-uniform initial assignment due to Hofmeister et al. (STACS 2002) against Schöning's
local search (FOCS 1999).

Joint work of: Iwama, Kazuo; Seto, Kazuhisa; Takai, Tadashi; Tamaki, Suguru.

4.9 A space-time tradeo� for permutation problems

Mikko Koivisto (University of Helsinki, FI)

Many combinatorial problems�such as the travelling salesman, feedback arc set, and tree-
width problem�can be formulated as �nding a feasible permutation on n elements. Based
on the idea of �covering� the linear orders by a small family of �thin� partial orders, we show
that permutation problems can be solved in time O∗(Tn) and space O∗(Sn) with ST < 4
at any

√
2 < S < 2 and with ST < 3.93 at a certain S. This work was �rst presented at

SODA'10.

Keywords: Partial order; space-time product; space-time tradeo�; travelling salesman

Joint work of: Koivisto, Mikko; Parviainen, Pekka

4.10 The power of group algebras in constrained monomial detec-
tion

Yiannis Koutis (Carnegie Mellon University - Pittsburgh, US)

Assume we are given a graph G whose vertices are colored with t di�erent colors C1, . . . , Ct,
and numbers c1, . . . , ct. What is the complexity of detecting in G a k-path that uses at
most ci nodes from color class Ci? An O∗(4k) algorithm appeared in MFCS10. We show

http://arxiv.org/abs/1006.5440
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that a simple modi�cation of our group algebra-based approach for the usual k-path problem
yields an an O∗(6k/2) algorithm. We also explore applications to the weighted version of the
multilinear detection problem.

Keywords: Multilinear monomial detection, max motif, weighted k-path

4.11 Circuit Complexity and Gate Elimination

Alexander S. Kulikov (Steklov Inst. - St. Petersburg, RU)

In the talk, we will �rst brie�y describe the gate elimination method (essentially, the only
known method for proving non-trivial lower bounds for unrestricted circuits) and then present
two proofs of 7n/3 and 3n lower bounds that are much simpler than the known proofs.

Keywords: Circuit complexity, gate elimination, lower bounds

4.12 The de�ciency of clauses-sets: An interesting complexity pa-
rameter

Oliver Kullmann (University of Wales - Swansea, GB)

We start with an overview on the de�ciency δ(F ) = c(F ) − n(F ) of clause-sets (CNFs), the
di�erence between the number of clauses and the number of variables.

For minimally unsatis�able clause-sets F the basic fact is δ(F ) ≥ 1 (�Tarsi's Lemma�).
The classi�cation of the layers of MU (the class of minimally unsatis�able clause-sets)

for δ = 1, 2, . . . is an interesting research project. A basic result here is that SAT-decision
is �xed-parameter tractable in the maximal de�ciency δ∗(F ) (the maximum of δ(F ′) for all
subsets F ′ of F ; if F is in MU, then we have δ∗(F ) = δ(F )).

For hypergraph colouring these considerations can be transferred, where then the �base
layer� is directly related to the solution of the Polya Problem.

The theoretical foundation for these considerations is given by autarky theory.
After this general information, we present a recent result, obtained in collaboration with

Xishun Zhao (Guangzhou). For every lean clause-set F (not having a non-trivial autarky;
this includes MU) there exists a variable occurring at most δ(F )+1+log2(δ(F )) many times.
We conjecture that a stronger version of this bound is sharp, even for the smaller class MU.

If there is no such variable in an arbitrary F , then we can conclude that F must have a
non-trivial autarky. It is an open problem whether we can �nd such an autarky in polynomial
time.

Keywords: De�ciency, SAT, CNF, autarky, minimal unsatis�ability, lean clause-sets,
variable degree

4.13 Improved algorithms for Max 2-CSP

Konstantin Kutzkov (IT University of Copenhagen, DK)

The breakthrough split and list algorithm by Williams (ICALP, 2004) solves the Max 2-CSP
problem in O(1.732n) steps. However, it needs O(1.588n) memory.

Several researchers have designed algorithms solving Max 2-CSP, or special cases of it,
using only polynomial space and running in time O(2cdn) where cd is a constant depending
on the average degree d of the input formula. The current record holders are Scott and Sorkin
(Discrete Optimization, 2007) with an algorithm running in O(2(1−2/(d+1))n) steps.

In this talk I will present two simple algorithms considerably improving the above bound.
The �rst algorithm makes use of the best known algorithm for Max 2-CSP by Gaspers and
Sorkin (SODA 2009), and the second one relies on a recent graph-theoretic result by Feige
and Kogan (Journal of Graph Theory, 2010).
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Keywords: Max 2-CSP; exact algorithms; polynomial space

Joint work of: Kutzkov, Konstantin; Kulikov, Alexander

4.14 Exact exponential time algorithms for Capacitated Dominating
Set

Mathieu Liedlo� (Université d'Orleans, FR)

Given a graph G = (V,E) and a capacity function c : V → N, the Capacitated Dominating
Set problem asks to compute a dominating set D ⊆ V of minimum cardinality where each
vertex v ∈ D can dominate at most c(v) neighbors.

By dynamic programming over subsets and exploiting structural properties of instances
that cannot be solved fast via a maximum matching approach, we show that the problem can
be solved in O(1.8463n) time.

Joint work of: Liedlo�, Mathieu; Todinca, Ioan; Villanger, Yngve

4.15 Known Algorithms on Graphs of Bounded Treewidth are Prob-
ably Optimal

Daniel Lokshtanov (University of California - San Diego, US)

We obtain a number of lower bounds on the running time of algorithms solving problems
on graphs of bounded treewidth. We prove the results under the Strong Exponential Time
Hypothesis of Impagliazzo and Paturi. In particular, assuming that SAT cannot be solved in
(2− ε)nmO(1) time, we show that for any ε > 0,

• Independent Set cannot be solved in (2− ε)tw(G)|V (G)|O(1) time,

• Dominating Set cannot be solved in (3− ε)tw(G)|V (G)|O(1) time,

• Max Cut cannot be solved in (2− ε)tw(G)|V (G)|O(1) time,

• Odd Cycle Transversal cannot be solved in (3− ε)tw(G)|V (G)|O(1) time,

• for any q ≥ 3, q-Coloring cannot be solved in (q − ε)tw(G)|V (G)|O(1) time, and

• Partition Into Triangles cannot be solved in (2− ε)tw(G)|V (G)|O(1) time.

Our lower bounds match the running times for the best known algorithms for the problems,
up to the ε in the base.

Keywords: Treewidth algorithms, Lower bounds

Full Paper: http://arxiv.org/abs/1007.5450

4.16 Fixed-parameter tractability of multicut parameterized by the
size of the cutset

Daniel Marx (HU Berlin, DE)

Given an undirected graph G, a collection {(s1, t1), . . . , (sk, tk)} of pairs of vertices, and an
integer p, the Edge Multicut problem ask if there is a set S of at most p edges such that the
removal of S disconnects every si from the corresponding ti. Vertex Multicut is the analogous
problem where S is a set of at most p vertices. Our main result is that both problems can be
solved in time 2O(p3) ·nO(1), i.e., �xed-parameter tractable parameterized by the size p of the
cutset in the solution. By contrast, it is unlikely that an algorithm with running time of the

http://arxiv.org/abs/1007.5450
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form f(p) ·nO(1) exists for the directed version of the problem, as we show it to be W[1]-hard
parameterized by the size of the cutset.

Joint work of: Marx, Daniel; Razgon, Igor

Full Paper: http://arxiv.org/abs/1010.3633

4.17 Saving Space by Algebraization

Jesper Nederlof (University of Bergen, NO)

I will �rst show how to solve Subset Sum with goal variable t in O∗(t) time and polynomial
space. Secondly, I will relate this to the Dynamic Programming algorithm of Bellman and
brie�y discuss generalizations and further applications of the used technique.

Joint work of: Lokshtanov, Daniel; Nederlof, Jesper

4.18 Exact Algorithms and Complexity

Ramamohan Paturi (UC San Diego, US)

Over the past couple of decades, a series of exact exponential-time algorithms have been de-
veloped with improved run times for a number of problems including Maximum Independent
Set, k-SAT, and k-colorability using a variety of algorithmic techniques such as backtracking,
dynamic programming, and inclusion-exclusion.

The series of improvements are typically in the form of better exponents compared to
exhaustive search.

These improvements prompt several questions, chief among them is whether we can expect
continued improvements in the exponent.

Is there a limit beyond which one should not expect improvement? Under suitable com-
plexity assumptions, what can we say about the likely exact complexities of various NP-
complete problems? In this talk, we examine some early results for these di�cult questions.

Keywords: Exact Complexity, Satis�ability

4.19 More Lower Bounds on Spanning Trees of Low Degree Con-
nected Graphs

Mike Robson (Université Bordeaux, FR)

Lower bounds on the number of spanning trees of low degree graphs are useful for analysing
the e�ectiveness of memorising variants of exponential algorithms. By restricting our atten-
tion to large graphs without certain features which will never arise in this application, we are
able to prove bounds close to or better than the conjectured bounds for the general case.

4.20 Slightly Superexponential Parameterized Problems

Saket Saurabh (The Institute of Mathematical Sciences - Chennai, IN)

A central problem in parameterized algorithms is to obtain algorithms with running time
f(k) · nO(1) such that f is as slow growing function of the parameter k as possible.

In particular, the �rst natural goal is to make f(k) single-exponential, that is, ck for some
constant c.

This has led to the development of parameterized algorithms for various problems where
f(k) appearing in their running time is of form 2O(k). However there are still plenty of

http://arxiv.org/abs/1010.3633
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problems where the �slightly superexponential� f(k) appearing in the best known running
time has remained non single-exponential even after a lot of attempts to bring it down. A
natural question to ask is whether the f(k) appearing in the running time of the best-known
algorithms is optimal for any of these problems.

In this talk, we examine parameterized problems where f(k) is kO(k) = 2O(k log k) in the
best known running time and for a number of such problems, we show that the dependence
on k in the running time cannot be improved to single exponential.

Keywords: Parameterized algorithms, ETH, Algorithmic lower bounds

Joint work of: Lokshtanov, Daniel; Marx, Daniel; Saurabh, Saket

4.21 The Exponential Time Complexity of Computing the Proba-
bility that a Graph is Connected

Nina So�a Taslaman (IT University of Copenhagen, DK)

We show that for every probability p with 0 < p < 1, computation of all-terminal graph
reliability with edge failure probability p requires time exponential in Ω(m/ log2m) for simple
graphs of m edges under the Exponential Time Hypothesis.

Joint work of: Husfeldt, Thore; Taslaman, Nina

4.22 Inclusion/Exclusion Branching for Partial Requirements: An
algorithm for k-Set Splitting

Johan van Rooij (Utrecht University, NL)

Inclusion/exclusion branching is a way to branch on requirements imposed on problems, in
contrast to the classical branching on parts of the solution. The technique turned out to be
useful for �nding and counting (minimum) dominating sets (van Rooij et al., ESA 2009).

In this talk, we extend the technique to the setting where one is given a set of properties
and seeks (or wants to count) solutions that have at least a given number of these properties.

We focus on using the new approach combined with previous work to give a polynomial
space algorithm for k-Set Splitting that improves the fastest known result signi�cantly.

We will also apply the new idea to the fastest polynomial space algorithm for counting
dominating sets, and directly obtain a polynomial space algorithm for Partial Dominating
Set with the same running time up to a linear factor.

Keywords: Inclusion/Exclusion, Branching Algorithm, Measure and Conquer, Set Split-
ting, Partial Dominating Set

Joint work of: van Rooij, Johan; Nederlof, Jesper

See also: Jesper Nederlof and Johan M. M. van Rooij. Inclusion/Exclusion Branching
For Partial Dominating Set and Set Splitting, International Symposium on Parameterized
and Exact Computation, IPEC 2010

4.23 New Plain-Exponential Time Classes for Graph Homomor-
phism

Magnus Wahlström (MPI für Informatik - Saarbrücken, DE)

A homomorphism from a graph G to a graph H (assume both are simple, undirected graphs)
is a mapping f : V (G)→ V (H) such that if uv ∈ E(G) then f(u)f(v) ∈ E(H). The problem
Hom(G,H) of deciding whether there is a homomorphism from G toH is NP-complete, and in
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fact the fastest known algorithm for the general case has a running time of O∗(n(H)cn(G)), for
a constant 0 < c < 1 (as usual, the notation O∗(·) signi�es that polynomial factors have been
ignored). We show that in the restricted case that either G or H has cliquewidth bounded
by k, then the problem can be solved in time O∗(cnk ), where ck is a constant depending on k.

The same holds for the problem of computing whether a graph has cliquewidth at most k.

Full Paper: http://dx.doi.org/10.1007/s00224-010-9261-z

See also: Wahlström, Magnus: "New Plain-Exponential Time Classes for Graph Homo-
morphism." Theory of Computing Systems, 2010.

4.24 Improving exhaustive search implies superpolynomial lower
bounds

Ryan Williams (IBM Almaden Center - San José, US)

The P vs NP problem arose from the question of whether exhaustive search is necessary for
problems with short veri�able solutions. We do not know if even a very slight algorithmic
improvement over exhaustive search is universally possible for all NP problems, and to date
no major consequences have been derived from the assumption that an improvement exists.

We show that for some natural NP and BPP problems, minor algorithmic improvements
over the trivial deterministic simulation already entail lower bounds such as NEXP is not in
P/poly and LOGSPACE is not equal to NP.

These results are especially interesting given that similar improvements have been found
for many other hard problems.

Optimistically, one might hope our results suggest a new path to lower bounds; pessimisti-
cally, they show that carrying out the modest program of �nding slightly better algorithms
for all search problems may be di�cult (if not impossible).

4.25 E�cient Listing of General Graph Patterns

Virginia Vassilevska Williams (University of California - Berkeley, US)

Many parametrized problems ask for some special subgraph of size k in a large graph of size n.
Given an algorithm for determining if a substructure exists, one can typically �nd an example
of the substructure by self-reducibility, in O(n) calls to the graph. We give simple black-box
methods for reducing the running time overhead from search to decision in parameterized
algorithms, which leads to listing algorithms with low amortized complexity per item. Our
results are as follows.

Given an O(f(k)nc)-time algorithm for detecting any graph pattern of size k in a graph
on n nodes, one can produce an O(k2f(k)nc) algorithm for �nding such a pattern. The
overhead of listing up to L subgraphs can also be reduced signi�cantly by simply adapting
calls to a decision oracle. If D(n, k) is the time to detect a graph pattern of size k, then L
such subgraphs can be listed roughly in time O(Lk2D(n/L1/k, k)). We give applications to
e�cient �nding and listing of k-trees, k-cliques and other k-subgraphs.

Keywords: Pattern listing

Joint work of: Williams, Virginia Vassilevska; Williams, Ryan

http://dx.doi.org/10.1007/s00224-010-9261-z
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5 Open problems

5.1 Bandwidth in O∗(4n)

by Marek Cygan.

Given a graph G with n vertices, an ordering is a bijective function π : V (G)→ {1, 2, . . . , n}.
Bandwidth of π is a maximal length of an edge, i.e., bw(π) = maxuv∈E(G) |π(u) − π(v)|.
The Bandwidth problem, given a graph G and a positive integer b, asks if there exists an
ordering of bandwidth at most b.

Question Design an algorithm for the Bandwidth problem running in O∗(4n) time.

Remark Currently the best known polynomial space algorithm has O(9.37n) time com-
plexity, whereas the best known exponential space algorithm runs in time O(4.39n) [1].

References

[1] M. Cygan, and M. Pilipczuk, Bandwidth and Distortion Revisited, CoRR, abs/1004.5012, 2010,
http://arxiv.org/abs/1004.5012.

5.2 Parametrized counting of maximal cliques

by David Eppstein.

This problem concerns the relationship between the worst-case complexity of �nding cliques
in arbitrary graphs and in sparse graphs. We let n and m represent the number of edges in
a given graph G, and d represent the degeneracy of G; that is, d is the smallest number for
which every subgraph of G contains at least one vertex of degree at most d [3, 7, 11]. It is
possible to order the vertices of G, by a linear time greedy algorithm, in such a way that each
vertex has at most d later neighbors in the ordering; such an ordering is called a degeneracy
ordering.

What we know already:

• Many algorithms are known with running times of the form O(cn) for �nding the max-
imum clique in a graph, with varying values of c depending on whether polynomial
or exponential space is allowed [4, 9, 10, 12]. Any such algorithm may be trivially
converted into an algorithm for the same problem with the running time O(ncd), by
calling the algorithm separately on each of the subgraphs induced by a vertex and its
later neighbors in a degeneracy ordering.

• The clique polynomial [6], a polynomial in which the coe�cient of xi is the number of
i-vertex cliques in a graph, may be trivially computed in time 2n, and apparently there
is an unpublished manuscript showing that nothing signi�cantly faster is possible unless
the strong exponential time hypothesis is false. Regardless of whether the best time
bound of the form cn has c = 2 or c smaller, there is again an automatic conversion
to an algorithm with running time O(ncd): if one adds the clique polynomials of the
subgraphs induced by a vertex and its later neighbors, the resulting sum overcounts the
cliques in a predictable way (cliques of size i also contribute to the coe�cients of xj for
each j < i) that is easily inverted.

• All maximal cliques may be listed in time O(3n/3), optimum in the worst case since
there exist graphs with this many cliques [1, 8, 13]. All maximal cliques may also be
listed in time O(dn3d/3), almost optimum since there exist graphs with (n − d)3d/3

cliques [2]. However, although the O(3n/3) bound and the O(dn3d/3) bound can be
shown using closely related algorithms, the conversion from one to the other is not
automatic.
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• All maximal cliques may be counted in time O(cn) for c ≈ 1.3642, signi�cantly less
than the time to list them all [5]. However, there is no known algorithm parameterized
by degeneracy for counting maximal cliques faster than listing them.

Question What is the best possible time bound of the form O(nf(d)) for computing the
number of maximal cliques in a graph? Is it possible to solve this problem in time O(ncd)
where c is the base of the exponent in the best time bound of the form O(cn) for counting
maximal cliques, or at least to solve it more quickly than the O(dn3d/3) bound for listing all
maximal cliques?
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5.3 Edge colouring under ETH

by Thore Husfeldt.

The k-edge colouring problem asks for a mapping f : E → {1, . . . , k} that �colours� the edges
of a given undirected graph G = (V,E) so that no pair of adjacent edges has the same colour.
It is known that the smallest k for which such a colouring exists is closely related to the
maximum degree d of the graph.

Algorithms with running times around exp(O(nd)) exist; for example, by building the line
graph of G and running a vertex colouring algorithm. It is easy to show using standard reduc-
tions that under the exponential time hypothesis no algorithm with running time exp(o(n))
can exist. The gap between these two results, in particular our lack of understanding of the
dependency on k (or, equivalently, d) has been pointed out several times [1].

A timid �rst step would be to establish a result analoguous to what is known for k-
satis�ability [2]:
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Question For k = 3, 4, . . . , let ck denote the in�mum of the values δ for which there exists a
O(exp(δn)) algorithm for k-edge colouring. Show that ck is an increasing sequence assuming
the exponential time hypothesis.

References
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5.4 Time-Space Tradeo� for TSP

by Mikko Koivisto.

The fastest algorithm for Traveling Salesman Problem (TSP) runs in time O∗(2n) and
space O∗(2n), where n is the number of cities [1, 3]. If only polynomial space is allowed, the
fastest algorithm takes time 4nnO(logn) [2].

Question Design a deterministic algorithm for TSP with running time O∗(Tn), using space
O∗(Sn), such that S · T < 3.92.

Remark A time-space tradeo� with 3.92 < S · T < 3.93 is achieved in [4].
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5.5 The VecMatic Number

by Yiannis Koutis.

Let Zk2 denote the space of k-dimensional 0-1 vectors over GF (2). We say that a graph G is
a d-line graph, if it is the line graph of a graph H whose maximum degree is d.

Let G = (V,E) be a graph, and C : V → Zk2 an assignment of Zk2-vectors to the nodes of
G. We call C a k-vector coloring if for all v ∈ V

C(v) 6∈ span({C(w) : w ∈ N(v)})

In other words C is a k-vector coloring if for all v ∈ V the vector assigned to v is linearly
independent (over GF (2)) from the vectors assigned to its neighbors.
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De�nition We de�ne the VecMatic number βG as the minimum integer k such that G has
a k-dimensional vector coloring.

While the usual notion of coloring imposes pairwise constraints between a node and its
neighbors, the k-vector coloring de�nition imposes a neighborhood-wise constraint. An im-
mediate observation is that βG ≤ χG. A second observation is that for the case of the k-clique
βG = χG = k. Several questions are open about the VecMatic Number and its relationship
with the Chromatic Number χG.

• What is the complexity of computing βG? The decision problem is clearly in NP.
However, we don't yet have a hardness proof. The NP-hardness proof for 3-coloring
doesn't seem to extend to 3-vector coloring.

• How big can βG be in terms of χG? If βG = 2 then G must be bipartite and so χG = 2.
For all βG ≥ 3, there are graphs where βG < χG. Michael Saks provided an argument
showing that there are graphs where βG is exponentially smaller than χG. Hopefully
this will be written up soon. A precise characterization of the gap is an interesting
problem.

• The gap between βG and χG is perhaps more interesting when G is a d-line graph,
i.e. for graphs encoding the edge-colorability problem for graphs of maximum degree
d. Vizing's theorem states that a d-line graph is either d-colorable, or (d+ 1)-colorable.
Holyer proved that it is NP-hard to decide between the two. It must also be the case
that βG is either equal to d or d+ 1. It can't be smaller than d because the line graph
contains a d-clique, and it can't be larger than d + 1 because it is upper bounded by
the chromatic number. Does there exist a d-line graph G such that βG = d+ 1? If not,
what is the deterministic and randomized complexity of �nding a d-vector coloring? If
yes, are there line graphs where βG = χG − 1?

• Is there a planar graph G such that βG < χG ?

• Assuming that the problem is NP-hard, what is its inapproximability properties? It
is known that χG is inapproximable within a factor of n1−ε for all ε, modulo mild
complexity assumptions. Is βG as hard to approximate? Also, what is the complexity
parameterized with respect to k?

5.6 Surjective Coloring

by Jan Kratochvil.

What is the computational complexity of the following problem? Given a system of triples
(X,T ), does there exist a surjective 3-coloring of X such that no triple t ∈ T has all three
colors?

The di�culty lies in requiring that all three colors are used. The naive approach to try
all
(
n
3

)
triples of vertices as witnesses of three di�erent colors fails � once three vertices are

precolored by di�erent colors, the question becomes NP-complete (an easy gadget construc-
tion).

The question is related to the concept of coloring so called mixed hypergraphs. It is a
special case of surjective CSP.

5.7 Finding an autarky when all variables occur �often�

by Oliver Kullmann.

• We consider the SAT problem for conjunctive normal forms F (�clause-sets�).
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• The set of all minimally unsatis�able clause-sets is denoted byMU (unsatis�able clause-
sets F , which become satis�able after elimination of any clause C ∈ F ).

• Autarkies for F are generalised satisfying assignments � they need only to satisfy
every clause of F they �touch�. For example the empty partial assignment (touching no
clause) or every satisfying assignment for F (touching every clause of F ) is an autarky
for F .

• If the partial assignment ϕ is an autarky for F , then ϕ ∗ F ⊆ F (where ϕ ∗ F is the
result of applying ϕ to F , i.e., removing satis�ed clauses and falsi�ed literals), and thus
ϕ ∗ F is satis�ability-equivalent to F .

• A clause-set is called lean if it does not have a non-trivial (that is, non-empty) autarky.
The empty clause-set is lean, every other lean clause-set is unsatis�able.

• Minimally unsatis�able clause-sets are lean.

• A relevant parameter here is the de�ciency δ(F ) := c(F ) − n(F ), the di�erence of
number of clauses and number of variables (so c(F ) := |F | and n(F ) := | var(F )|).

• For F ∈MU we have δ(F ) ≥ 1 (�Tarsi's Lemma�).

• A clause-set F is matching-lean i� it has no non-trivial matching autarky, which is
equivalent to ∀F ′ ⊂ F : δ(F ′) < δ(F ). Thus in fact for non-empty matching-lean
clause-sets F we have δ(F ) ≥ 1.

• For background on autarkies and minimal unsatis�ability see [1].

Question In [2] we prove the following:

Consider a matching-lean clause-set F with n(F ) > 0. If F does not contain a variable
occurring at most δ(F ) + 1 + log2(δ(F )) many times (since we consider variables, we count
both positive and negative occurrences), then F is not lean (i.e., has a non-trivial autarky).

The question is now whether this autarky can be found in polynomial time.

Remarks

1. In [2] we prove actually a sharper bound.

2. We also discuss in [2] how to extract from F in polynomial time a satis�able clause-set
F ′, where then the above question of �nding an autarky becomes equivalent to �nding
a satisfying assignment for F ′.

3. The core of the proof in [2] is to prove an upper bound on the minimal variable-degree
for F ∈ MU , and then to lift this upper bound to lean clause-sets (so, if the upper
bound is not ful�lled, then the clause-set can't be lean).
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5.8 Min Ones 3-SAT vs. Promise Ones 3-SAT

by Konstantin Kutzkov.

The famous k-SAT algorithm by Dantsin et al. [1] is based on the parameterized problem of
searching for a satisfying assignment setting at most r variables to 1, Min Ones k-SAT(r).
The best known upper bound for this problem in the case k = 3 is O∗(2.56r) [2]. Recently,
Moser and Scheder [3] proposed a novel algorithm, Promise Ones 3-SAT, which �nds any
satisfying assignment in O(2r) under the promise that a satisfying assignment setting at
most r variables to 1 exists. Their result is a derandomization of Schöning's algorithm for
k-SAT [4]. Can we solve Min Ones 3-SAT also in time O(2r)?
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5.9 Solving Hamiltionian cycle by branching

by Dániel Marx.

The Hamiltonian cycle problem can be solved in time O∗(cn) using the classical Held-Karp
algorithm or the very recent algorithm of Björklund. Can we achieve a similar running time
using an algorithm that is based on simple branching or backtracking? We can formalize the
question the following way:

Is there a polynomial-time algorithm that, given a graph G on n > 3 vertices,
outputs graphs G1, . . . , Gt such that

1. t ≤ c for some constant c,

2. Gi has at most n− 1 vertices for every 1 ≤ i ≤ t, and
3. G has a Hamiltonian cycle if and only if there is a 1 ≤ i ≤ t such that Gi

has a Hamiltonian cycle?

Clearly, such an algorithm would imply a branching algorithm for Hamiltonian cycle with
running time O∗(cn). Furthermore, it would imply a polynomial-time, polynomial-space
randomized algorithm with success probability c−n.

5.10 Median Finding in Exponential Families

by Yoshio Okamoto.

We are explicitly given a �nite set X and a weight function w : X → R, and implicitly
given a family F ⊆ 2X of subsets of X (as a membership oracle). We want to �nd a set
in F that has a median weight. Namely, for each set S ∈ F we have the associated weight
w(S) =

∑
e∈S w(e). Let's order them as S1, S2, . . . , S|F| so that Si has no larger weight than

Sj if i < j. The median weight is de�ned as w(Sd|F|/2e).
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According to the choice of F , we can study several problems. The simplest one is F = 2X .
Even in this case, I don't know how hard the problem is. If we are asked to �nd the k-th
lighest set in F and k is a part of the input, then the problem is NP-hard (proven by an easy
reduction of the subset sum problem). During the workshop, Gerhard Woeginger asked me
whether the (decision version of) the median problem belongs to NP or not. I don't have an
answer to his question either.

As for the algorithm, during the workshop Marek Cygan and Fabrizio Grandoni gave me
an O∗(2|X|/2)-time algorithm, as one does sort-and-search for the subset sum problem. This
algorithm actually �nds the k-th lighest set for any given k.

Other natural choices of F come from graph problems. For example, X is the edge set
of an undirected graph and F is the family of all perfect matchings, all spanning trees, or
all Hamiltonian cycles. Note that for several cases (like perfect matchings, spanning trees),
there are some k-best algorithms, with which one can list all sets in F from the lightest to
the k-th lightest, running in poly(|X|, k) time. However, when k = d|F|/2e, the running time
is at least as bad as Ω(|F|), and not better than the brute-force enumeration.

5.11 Subexponential Time Algorithm for Feedback Arc Set in Tour-
naments

by Saket Saurabh.

A feedback arc set of a digraph D = (V,A) is a set of arcs such that its deletion from D makes
it a directed acyclic graph. It is well known that one can �nd a minimum sized feedback arc
set of a digraph on n vertices in time 2nnO(1). The open problem is about tournaments. A
tournament is an orientation of a complete undirected graph.

Open Problem Does there exists a 2o(n)nO(1) time algorithm for �nding a minimum sized
feedback arc set on tournaments with n vertices? Either obtain an algorithm with the desired
running time or show that such an algorithm is unlikely under some reasonable complexity
theory assumptions.

5.12 Time Complexity of Graph Homomorphism

by Magnus Wahlström.

A homomorphism G→ H for simple, undirected graphs G, H is a mapping f : V (G)→ V (H)
that preserves adjacency; that is, for every edge uv ∈ E(G), we have f(u)f(v) ∈ E(H). The
canonical example is H = Kk, in which G → H if and only if G is k-colorable, but many
other interesting cases exist; the existence of a homomorphism G → H is NP-complete for
any �x graph H which is not bipartite (and if H is bipartite, the question is equivalent to
2-coloring). See [4] for more.

With regards to time complexity, it is easily observed that the Graph Homomorphism
problem (i.e., deciding whether G → H for graph G, H given as input) is an intermediate
problem between the Chromatic Number problem and 2-CSP. That is, Chromatic Number is
a special case of Graph Homomorphism, which is in turn a special case of 2-CSP with n(G)
variables and domain size n(H). The former problem can be solved in O∗(2n) time [1]; for the
latter, Traxler has shown that no O∗(2O(n))-time algorithm is possible unless ETH fails [5].
The best known algorithm for Graph Homomorphism has a running time of O∗(n(H)n(G)) [7],
but it is unknown whether this is necessary. Speci�cally, it is an open question whether G→
H can be decided in time 2O(n(G)+n(H)); this was �rst asked by Fomin et al. [2]. This is the
main open question of this section.

Partial progress was made in [6], where it was shown that G → H can be solved

in O∗(c
n(G)+n(H)
k ) time if either G or H has cliquewidth at most k, where ck depends on k.
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The following open questions are raised by this, and may be interesting as intermediate
questions before tackling the main question above.

• Can the Circular Chromatic Number of a graph be computed in O∗(cn) (or O(2n))
time? The tools of [6] are not known to be able to handle this question.

• Can the time dependency for cases of bounded cliquewidth be improved to O∗(2nf(k))
or even O∗(2nnf(k))?

• Related: It is unknown whether cliquewidth is FPT. In [6], an algorithm with run-
ning time O∗((ck)n) is given for deciding (exactly) whether a graph has cliquewidth at
most k. Can the cliquewidth of a graph be computed in O∗(cn) time regardless of k?
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5.13 4-Clique on 3-Uniform Hypergraphs

by Ryan Williams.

Given a 3-uniform hypergraph on n nodes, i.e., a collection of 3-sets over an n-element set,
can a 4-clique be found in n4−ε time for some ε > 0? Here, a 4-clique is a set of four elements
{a, b, c, d} such that all four possible 3-sets over {a, b, c, d} appear in the collection. Such an
algorithm could be used to solve MAX-3-SAT and other CSP problems in less than 2n time.

5.14 Faster algorithms for TC0 satis�ability

by Ryan Williams.

A TC0
3 circuit is a four-layer DAG with only one node at the fourth layer. There are n nodes

in layer one, which are called the input nodes. All edges from layer 1 point to layer 2, all
edges from layer 2 point to nodes in layer 3, all nodes in layer 3 point to the single node in
layer 4. Each node is interpreted to be a MAJORITY gate. The value of a MAJORITY gate
is 1 i� at least half the nodes that point to the gate are set to 1. A TC0

3 circuit is satis�able
if there is a setting of 1's and 0's to the input nodes that makes the output node have value
1. Is there an algorithm for determining whether or not a TC0 circuit on n inputs and nc

gates is satis�able in O(2n−log2 n) steps, for every constant c? Such an algorithm could be
used to prove circuit lower bounds for depth-3 TC0, which is open.
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