
Julia’s efficient algorithm for subtyping unions and1

covariant tuples2

Benjamin Chung3

Northeastern University4

Francesco Zappa Nardelli5

Inria6

Jan Vitek7

Northeastern University & Czech Technical University in Prague8

Abstract9

The Julia programming language supports multiple dispatch and provides a rich type annotation10

language to specify method applicability. When multiple methods are applicable for a given call,11

Julia relies on subtyping between method signatures to pick the method to invoke. Julia’s subtyping12

algorithm is surprisingly complex, and deciding whether it is correct remains an open question.13

In this paper, we focus on one piece of this problem: the interaction between union types and14

covariant tuples. Previous work that addressed this particular combination of features did so by15

normalizing types to a disjunctive normal form ahead-of-time. Normalization is not practical due16

to space-explosion for complex type signatures and to interactions with other features of Julia’s17

type system. Our contribution is a description of the algorithm implemented in the Julia run-time18

system. This algorithm is immune to the space-explosion and expressiveness problems of standard19

algorithms. We prove this algorithm correct and complete against a semantic-subtyping denotational20

model in Coq.21

2012 ACM Subject Classification Theory of computation → Type theory22

Keywords and phrases Type systems, Subtyping, Union types23

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.2324

1 Introduction25

Union types, originally introduced by Barbanera and Dezani-Ciancaglini [4], are increasingly26

being used in mainstream languages. In some cases, such as Julia [6] or TypeScript [2], they27

are exposed at the source level. In others, such as Hack [1], they are only used internally28

for type inference. We describe a space-efficient technique for computing subtyping between29

types in the presence of distributive unions, arising from the Julia programming language.30

In our previous work on formalizing the Julia subtyping algorithm [15], we described the31

subtyping relation but were unable to describe the subtyping algorithm or prove it correct.32

Indeed, we found bugs and were left with unresolved issues.33

Julia’s subtyping algorithm [5] is an important part of its semantics. Julia is a dynamically34

typed language where methods are annotated with type signatures to enable multiple dispatch.35

During program execution, Julia must determine which method to invoke at each call site;36

for this, it searches the most specific applicable method (according to subtyping) that applies37

for a given invocation. The following snippet shows three declarations of multiplication:38

39
40

*(x:: Number , r:: Range) = range(x*first(r) ,...)41

*(x:: Number , y:: Number) = *(promote (x,y)...)42

*(x::T, y::T) where T <: Union{Signed , Unsigned } = mul_int (x,y)4344

The first two methods implement, respectively, the case where a range is multiplied by a45

number and generic numeric multiplication. The third method invokes native multiplication46

© Benjamin Chung, Francesco Zappa Nardelli, Jan Vitek;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECOOP.2019.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Subtyping union types and covariant tuples

when both arguments are either signed or unsigned integers (but not a mix of the two). Julia47

will use subtyping to decide which of the methods will be invoked for any specific invocation.48

To allow the expression of complex relationships in type signature, Julia offers program-49

mers a rich type language. Julia’s types include nominal single subtyping, union types,50

existential types, covariant tuples, invariant parametric datatypes, and singletons. These51

are all widely used in libraries, but pose challenges for subtyping. Julia’s design [6] was52

inspired by semantic subtyping [9], and while its types do not precisely abide by a semantic53

set-theoretic intuition, its subtyping algorithm must handle many of the same problems.54

This paper documents the first steps towards proving the correctness of Julia’s subtyping55

algorithm. We focus on the interaction of two features: union types and covariant tuples.56

Tuples are used to represent function signatures, as Julia does not record return types. They57

are covariant, as a function with more specific arguments is preferred to a more generic one.58

Union types are used as shorthand to avoid writing multiple functions with the same body.59

Rules for subtyping union types and covariant tuples have been known for a long time. Based60

on Vouillon [14], the following is a typical deductive system:61

allexist
t′ <: t t′′ <: t

Union{t′, t′′} <: t

existL
t <: t′

t <: Union{t′, t′′}

existR
t <: t′′

t <: Union{t′, t′′}

tuple
t1 <: t′

1 t2 <: t′
2

Tuple{t1, t2} <: Tuple{t′
1, t′

2}
62 While this rule system makes sense, it does not match the semantic intuition for subtyping.63

If we think of types as sets of values [13], we would expect that a union type would be64

analogous to a set theoretic union. Similarly, we would then expect that two types would65

be subtypes if their sets of values were subsets. Therefore, when a union type appears on66

the left-hand side of a judgment, all its components must be subtypes of the right-hand67

side; when a union type appears on the right-hand side of a judgment, there must exist a68

component that is a supertype of the left-hand side. The above system of rules violates these69

ideas. Consider the following judgment:70

Tuple{Union{t′, t′′}, t} <: Union{Tuple{t′, t}, Tuple{t′′, t}}71

72
Using the semantic subtyping intuition, the judgment should hold. We write the set of values73

denoted by the type t as JtK. The left hand side denotes the values {Tuple{v′, v′′} | v′ ∈74

Jt′K∪Jt′′K∧v′′ ∈ JtK}, while the right hand side denotes JTuple{t′, t}K∪JTuple{t′′, t}K. Obviously,75

the sets are the same. However, we cannot derive this relation from the above rules.76

According to them, we must pick either t′ or t′′ on the right hand side, ending up with either77

Tuple{Union{t′, t′′}, t} <: Tuple{t′, t} or Tuple{Union{t′, t′′}, t} <: Tuple{t′′, t}. In either case,78

the judgment does not hold. How can this problem be solved?79

Some early work [4, 13, 3] focused normalization to decide distributive subtyping between80

union types, while [7] explores how to reduce subtyping to regular tree expression inclusion.81

Other designs, as Vouillon [14] or Dunfield [8] do not handle distributivity. These days82

normalization remains popular, and, for instance, it is relied upon by Frisch et al. work on83

semantic subtyping [10], by Pearce flow-typing algorithm [12], and by Muelbrock and Tate in84

their general framework for union and intersection types [11]. Normalization entails rewriting85

all types into their disjunctive normal form, as unions of union-free types, before building86

the derivation. This lifts all choices to the top level, avoiding the structural entanglements87

that cause trouble. The correctness of this rewriting step comes from the semantic-subtyping88

denotational model [10], and the resulting subtype algorithm can be proved both correct and89

complete. However, this algorithm has two major drawbacks: it is not space efficient, and it90

does not interact well with the other features of Julia.91

The first drawback is that normalization can lead to exponentially bigger types. Real-92

world Julia code has types like the following [15] whose normal form has 32,768 constituent93

union-free types, making it impractical to store or to compute with:94

B. Chung, F. Zappa Nardelli, J. Vitek 23:3

Tuple{Tuple{Union{Int64, Bool}, Union{String, Bool}, Union{String, Bool},95

Union{String, Bool}, Union{Int64, Bool}, Union{String, Bool},96

Union{String, Bool}, Union{String, Bool}, Union{String, Bool},97

Union{String, Bool}, Union{String, Bool}, Union{String, Bool},98

Union{String, Bool}, Union{String, Bool}, Union{String, Bool}}, Int64}99

The second drawback of normalization is that it does not interact well with other100

features of the type system. In particular, Julia supports invariant constructors, which are101

incompatible with union normalization. For example, the type Array{Int} is an array of102

integers, and is not a subtype of Array{Any}. This seemingly simple feature, in conjunction103

with type variables, makes normalization ineffective. Consider the type Array{Union{t′, t′′}}.104

This type denotes the set of arrays whose elements are either of type t′ or t′′. It would be105

incorrect to rewrite it as Union{Array{t′}, Array{t′′}}, as this latter type denotes the set of106

arrays whose elements are either all of type t′ or all of type t′′. A weaker disjunctive normal107

form, only lifting union types inside each invariant constructor, can circumvent this problem.108

However, doing so only reveals a deeper problem caused by the presence of both invariant109

constructors and existential types. This is illustrated by the following judgment:110

Array{Union{Tuple{t}, Tuple{t′}}} <: ∃T . Array{Tuple{T }}111

112 This judgment holds if we set the existential T = Union{t, t′}. Since all types are in weak113

normal form, an algorithm based on the standard system of judgment rules would strip off114

the array type constructors and proceed. However, since type constructors are invariant115

on their arguments, it must first test that the relation holds in the original order (e.g.116

that Union{Tuple{t}, Tuple{t}} <: Tuple{T }) and in the reverse order (that Tuple{T } <:117

Union{Tuple{t}, Tuple{t′}}). It is in this combined check that we run into problems. The118

subtype check conducted in the original order can be concluded without issue, producing the119

constraint Union{t, t′} <: T . However, this constraint on T is stored for checking the reversed120

direction of subtyping, which is where the problems arise. When we check the opposite121

subtype order, we end up having to prove that Tuple{T } <: Union{Tuple{t}, Tuple{t′}} and122

in turn either T <: t or T <: t′. All of these are unprovable under the assumption that123

Union{t, t′} <: T . The key to derive a successful judgment for this relation is to rewrite124

the right-to-left check into Tuple{T } <: Tuple{Union{t, t′}}, which is provable. This anti-125

normalisation rewriting must be performed on sub-judgments of the derivation, and to126

the best of our knowledge it is not part of any subtype algorithm based on ahead-of-time127

disjunctive normalisation. As a result, straightforward normalization, even to a relaxed128

normal form, is incompatible with the full Julia type system.129

The complete Julia subtype algorithm is implemented in close to two thousand lines of130

highly optimized C code. This paper addresses only one part of that algorithm, the technique131

used to avoid space explosion while dealing with union types and covariant tuples. This is132

done by defining an iteration strategy over type terms, keeping a string of bits as its state.133

The space requirement of the algorithm is bounded by the number of unions in the type134

terms being checked. We prove in Coq that the algorithm is correct and complete with135

respect to a standard semantic subtyping model.136

We have chosen a minimal language with union, tuples, and primitive types to avoid137

being drawn into the vast complexity of Julia’s type algebra. This tiny language is expressive138

enough to highlight the decision strategy, and make this implementation technique known139

to a wider audience. The full Julia implementation shows that this technique extends to to140

invariant constructors and existential types [15], among others. We expect that it can be141

leveraged in other modern language designs.142

Our mechanized proof is available at: benchung.github.io/subtype-artifact.143

ECOOP

benchung.github.io/subtype-artifact

23:4 Subtyping union types and covariant tuples

2 A space-efficient subtyping algorithm144

Let us focus on a core type language consisting of binary unions, binary tuples and primitive145

types ranged over by p1 . . . pn where primitive type subtyping is identity, pi <: pi.146

147

148
type typ = Prim of int | Tuple of typ * typ | Union of typ * typ149150

2.1 Normalization151

Using normalization to determine subyping entails rewriting tuples so that unions occur at152

the top level. Consider the following query:153

Union{Tuple{p1, p2}, Tuple{p2, p3}} <: Tuple{Union{p2, p1}, Union{p3, p2}}154

The term on the left is normal form, but the right term needs to be rewritten as follows:155

Union{Tuple{p2, p3}, Union{Tuple{p2, p2}, Union{Tuple{p1, p3}, Tuple{p1, p2}}}}156

Given normalized types, one more step of rewriting gives us union-free lists of tuples,157

`1 = {Tuple{p1, p2}, Tuple{p2, p3}}158

and159

`2 = {Tuple{p2, p3}, Tuple{p2, p2}, Tuple{p1, p3}, Tuple{p1, p2}}.160

determining whether `1 <: `2 boils down to checking that for each element in `1 there should161

be an element in `2 such that the tuples are subtypes. Intuitively this mirrors the above162

defined rules ([allexist], [existL/R], [tuple]). As for Julia’s algorithm, the intuition is163

that one can avoid normalization by iterating over the original type terms and visiting every164

one of the elements of `1 and `2 without having to materialize those sets. The remainder of165

this section explains how this is done.166

A possible implementation of normalization-based subtyping can be written compactly.167

The subtype function takes two types and returns true if they are related by subtyping.168

It delegates its work to allexist to check that all normalized terms in its first argument169

have a super-type, and to exist to check that there is at least one super-type in the second170

argument. The norm function takes a type term and returns a list of union-free terms.171

172

173
let subtype (a:typ)(b:typ) = allexist (normalize a) (normalize b)174

175

let allexist (a:typ)(b:typ) =176

foldl (fun acc a' => acc && exist a' b) true a177

178

let exist(a:typ)(b:list typ) =179

foldl (fun acc b' => acc || a==b') false b180

181

let rec normalize = function182

| Prim i -> [Prim i]183

| Tuple t t' ->184

map_pair Tuple (cartesian_product (normalize t) (normalize t'))185

| Union t t' -> (normalize t) @ (normalize t ')186187

B. Chung, F. Zappa Nardelli, J. Vitek 23:5

2.2 Iteration with Choice Strings188

Given a type term such as the following,189

Tuple{Union{Union{p2, p3}, p1}, Union{p3, p2}}190

we are looking for an iteration sequence that will yield the following tuples,191

Tuple{p2, p3}, Tuple{p2, p2}, Tuple{p1, p3}, Tuple{p1, p2}, Tuple{p3, p3}, Tuple{p3, p2}.192

193

An alternative representation for the term is a tree, where each occurence of union node is a194

choice point. The following tree thus has three choice points.195

[,]

2

? ?
1 3 2?

3
196

At each choice point we can go either left or right, making such a decision at each points197

leads to visit one particular tuple.198

[,]

2

L L
1 3 2L

3

= Tuple{p2, p3}

[,]

2

L R
1 3 2L

3

= Tuple{p2, p2}

[,]

2

L L
1 3 2R

3
= Tuple{p2, p3}

[,]

2

L R
1 3 2R

3
= Tuple{p2, p2}

[,]

2

R L
1 3 2?

3

= Tuple{p3, p2}

[,]

2

R R
1 3 2?

3

= Tuple{p3, p3}

199

Each tuple is uniquely determined by the original type term t and a choice string c. In the200

above example, the result of iteration through the normalized, union-free, type terms is201

defined by the strings LLL, LLR, LRL, LRR, RL, RR. The length of each string is bounded by202

the number of unions in a term.203

The iteration sequence in the above example is thus LLL → LLR → LRL → LRR → RL →204

RR. Stepping from a choice string c to the next string consists of splitting c in three, c′ L c′′,205

where c′ can be empty and c′′ is a possibly empty sequence of R. The next string is c′ R cpad,206

that is to say it retains the prefix c′, toggles L to R, and is padded by a sequence of Ls. If207

there is no L in c, iterations has terminated.208

One step of iteration is performed by calling the next function with a type term and a209

choice string. next either returns the next string in the sequence or None. Internally, it calls210

on step to toggle the last L and shorten the string (constructing c′ R). Then it call on pad to211

add the trailing sequence of Ls (constructing c′ R cpad).212

213

214
type choice = L | R215

216

let rec next(a:typ)(l: choice list) =217

match step l with218

| None -> None219

| Some(l') -> Some(fst (pad a l'))220221

The step function delegates the job of flipping the last occurrence of L to toggle. For ease222

of programming, it reverses the string so that toggle can be a simple recursion without an223

accumulator. If the given string has no L, then toggle returns empty, and step returns None.224

ECOOP

23:6 Subtyping union types and covariant tuples

225

226
let step(l: choice list) =227

match rev (toggle (rev l)) with228

| [] -> None229

| hd:: tl -> Some(hd::tl)230

231

let rec toggle = function232

| [] -> []233

| L::tl -> R::tl234

| R::tl -> toggle tl235236

The pad function takes a type term and a choice string to be padded. It returns a pair, the237

first element is the padded string and the second is remaining string. pad traverses the term,238

visiting both side of each tuple, and for unions it uses the given choice string to direct its visit.239

Each union encountered consumes a character out of the input string, once the string is fully240

consumed, any remaining unions are treated as if there was a L. The first component of the241

returned value is the choice given as argument extended with a number of L corresponding242

to the number of unions encountered after string ran out.243

244

245
let rec pad t l =246

match t,l with247

| (Prim i,l) -> ([],l)248

| (Tuple(t,t'),l) ->249

let (h,tl) = pad t l in250

let (h',tl ') = pad t' tl in (h @ h',tl ')251

| (Union(t,_),L::r) ->252

let (h,tl) = pad t r in (L::h,tl)253

| (Union(_,t),R::r) ->254

let (h,tl) = pad t r in (R::h,tl)255

| (Union(t,_) ,[]) -> (L::(fst(pad t [])) ,[])256257

To obtain the initial choice string, the string only composed of Ls, it suffices to call pad with258

the type term under consideration and an empty list. The first element of the returned tuple259

is the initial choice string. For convenience, we define the function initial for this.260

261

262
let initial (t:typ) = fst (pad t [])263264

2.3 Subtyping with Iteration265

Julia’s subtyping algorithm visits union-free type terms using choice strings to iterate over266

types. The subtype function takes two type terms, a and b, and returns true if they they are267

related by subtyping. It does so by iterating over all union-free type terms in a, and checking268

that for each of them, there exists a union-free type term in b that is a super-type.269

270

271
let subtype (a:typ)(b:typ) = allexist a b (initial a)272273

The allexist function takes two type terms, a and b, and a choice string f, and returns true274

if a is a subtype of b for the iteration sequence starting at f. This is achieved by recursively275

testing that for each union-free type term in a (induced by a and the current value of f),276

there exists a union-free super-type in b.277

B. Chung, F. Zappa Nardelli, J. Vitek 23:7

278

279
let rec allexist (a:typ)(b:typ)(f: choice list) =280

match exist a b f (initial b) with281

| true -> (match next a f with282

| Some ns -> allexist a b ns283

| None -> true)284

| false -> false285286

Similarly, the exist function takes two type terms, a and b, and choice strings, f and e. It287

returns true if there exists in b, a union-free super-type of the type specified by f in a. This288

is done by recursively iterating through e. The determination if two terms are related is289

delegated to the sub function.290

291

292
type res = NotSub | IsSub of choice list * choice list293

294

let rec exist(a:typ)(b:typ)(f: choice list)(e: choice list) =295

match sub a b f e with296

| IsSub(_,_) -> true297

| NotSub ->298

(match next b e with299

| Some ns -> exist a b f ns300

| None -> false)301302

Finally, the sub function take two type terms and two choice strings and return a value of303

type res which can be NotSub to indicate that the types are not subtypes or IsSub(_,_) when304

they are. If the two types are primitives, then they are only subtypes if they are equal. If305

the types are tuples, they are subtypes is both of their elements are subtypes. Note that the306

return type of sub, when successful, hold the unused choice strings for both type arguments.307

When confronted with a union, sub will follow the choice strings to decide which branch to308

take. Consider for instance the case when the first type term is Union(t1,t2) and the second309

is type t, if the first element of the choice string is an L, then t1 and t will be checked,310

otherwise sub will check t2 and t.311

312

313
let rec sub t1 t2 f e =314

match t1 ,t2 ,f,e with315

| (Prim i,Prim j,f,e) -> if i==j then IsSub(f,e) else NotSub316

| (Tuple(a1 ,a2), Tuple(b1 ,b2),f,e) ->317

(match sub a1 b1 f e with318

| IsSub(f', e') -> sub a2 b2 f' e'319

| NotSub -> NotSub)320

| (Union(a,_),b,L::f,e) -> sub a b f e321

| (Union(_,a),b,R::f,e) -> sub a b f e322

| (a,Union(b,_),f,L::e) -> sub a b f e323

| (a,Union(_,b),f,R::e) -> sub a b f e324325

2.4 Further optimization326

We have presented an implementation that used lists to represent choice strings. It thus327

required allocation when adding elements to the list and for reversing the list. In Julia, choice328

strings are represented by bit vectors of size bounded by the number of unions in each type329

term. Once that size is known and the bit vector is created, no further allocation is required.330

ECOOP

23:8 Subtyping union types and covariant tuples

3 Correctness and Completeness of Subtyping331

To prove the correctness of Julia’s subtyping we take the following general approach. We332

start by giving a denotational semantics for types from which we derive a definition of333

semantic subtyping. Then we easily prove that a normalization-based subtyping algorithm334

is correct and complete. Rather than directly working with the notion of choice strings as335

iterators over types, we start with a simpler structure, namely that of iterators over the trees336

induced by type terms. We prove correct and complete a subtype algorithm that uses these337

simpler iterators. Finally, we establish a correspondence between tree iterators and choice338

list iterators. This concludes our proof of correctness and completeness, details can be found339

in the Coq mechanization.340

The denotational semantics we use for types is as follows:341

JpiK = {pi}342

JUnion{t1, t2}K = Jt1K ∪ Jt2K343

JTuple{t1, t2}K = {Tuple{t′
1, t′

2} | t′
1 ∈ Jt1K, t′

2 ∈ Jt′
2K}344

345

346 We define subtyping as follows, if JtK ⊆ Jt′K, then t <: t′. This leads to the definition of347

subtyping in our restricted language.348

I Definition 1. The subtyping relation t1 <: t2 holds iff ∀t′
1 ∈ Jt1K,∃ t′

2 ∈ Jt2K, t′
1 = t′

2.349

The use of equality for relating types is a simplification afforded by the structure of primitives.350

3.1 Subtyping with Normalization351

The correctness and completeness of the normalization-based subtyping algorithm of Sec-352

tion 2.1 requires proving that the normalize function returns all union-free type terms.353

I Lemma 2 (NF Equivalence). t′ ∈ JtK iff t′ ∈ normalize t.354

Theorem 3 states that the subtype relation of Section 2.1 abides by Definition 1 because it355

uses normalize to compute the set of union-free type terms for both argument types, and356

directly checks subtyping.357

I Theorem 3 (NF Subtyping). For all a and b, subtype a b iff a <: b.358

Therefore, normalization based subtyping is correct against our definition.359

3.2 Subtyping with Tree Iterators360

Reasoning about iterators that use choice strings, as described in Section 2.2, is tricky as it361

requires simultaneously reasoning about the structure of the type term and the validity of the362

choice string that represents the iterator’s state. Instead, we propose to use an intermediate363

data structure called a tree iterator to tie the two together and thus makes reasoning simpler.364

A tree iterator is a representation of the iteration state embedded in a type term. Thus a365

tree iterator yields a union-free tuple, and given a type term, a tree iterator can either step366

to a successor state or is a final state. Recalling the graphical notation of Section 2.2, we can367

represent the state of iteration as a combination of type term and a choice or, equivalently,368

as a tree iterator.369

B. Chung, F. Zappa Nardelli, J. Vitek 23:9

Choice string: Tree iterator:

[,]

2

? ?
1 3 2?

3

, RL = Tuple{p1, p3}

[,]
R L
1 3

2

= Tuple{p1, p3}
370

This structure-dependent construction makes tree iterators less efficient than choice strings.371

A tree iterator must have a node for each structural element of the type being iterated over,372

and is thus less space-efficient than the simple choices-only strings. However, it is easier to373

prove subtyping correct for tree iterators first.374

Tree iterators depend on the type term they iterate over. The possible states are IPrim375

at primitives, ITuple at tuples, and for unions either ILeft or IRight.376

377

378
Inductive iter: Typ -> Set :=379

| IPrim : forall i, iter (Prim i)380

| ITuple : forall t1 t2 , iter t1 -> iter t2 -> iter (Tuple t1 t2)381

| ILeft : forall t1 t2 , iter t1 -> iter (Union t1 t2)382

| IRight : forall t1 t2 , iter t2 -> iter (Union t1 t2).383384

The next function for tree iterators steps in a depth-first, right-to-left order. We have four385

cases to worry about. For a primitive type, there is no successor state. A tuple steps its386

second child; if that has no successor step, then it steps its first child and reset the second387

child. When given a ILeft or an IRight it tries step it only child. If the child has no successor,388

an ILeft steps to an IRight and its child is set to the right child of the corresponding node389

in the type term.390

391

392
Fixpoint next(t:Typ)(i:iter t): option (iter t) := match i with393

| IPrim _ => None394

| ITuple t1 t2 i1 i2 =>395

match (next t2 i2) with396

| Some i' => Some(ITuple t1 t2 i1 i')397

| None =>398

match (next t1 i1) with399

| Some i' => Some(ITuple t1 t2 i' (start t2))400

| None => None401

end402

end403

| ILeft t1 t2 i1 =>404

match (next t1 i1) with405

| Some(i ') => Some(ILeft t1 t2 i ')406

| None => Some(IRight t1 t2 (start t2))407

end408

| IRight t1 t2 i2 =>409

match (next t2 i2) with410

| Some(i ') => Some(IRight t1 t2 i ')411

| None => None412

end413

end.414415

An induction principle for tree iterators is needed to reason about all iterator states for a416

given type. First, we show that iterators eventually reach a final state. This is done with417

function inum that assigns natural numbers to each state. It simply counts the number of418

ECOOP

23:10 Subtyping union types and covariant tuples

remaining steps in the iterator, using tnum to count the total number of union-free types419

denoted by some type t as a helper.420

B. Chung, F. Zappa Nardelli, J. Vitek 23:11

421

422
Fixpoint tnum(t:Typ):nat :=423

match t with424

| Prim i => 1425

| Tuple t1 t2 => tnum t1 * tnum t2426

| Union t1 t2 => tnum t1 + tnum t2427

end.428

429

Fixpoint inum(t:Typ)(ti:iter t):nat :=430

match ti with431

| IPrim i => 0432

| ITuple t1 t2 i1 i2 => inum t1 i1 * total_num t2 + inum t2 i2433

| IUnionL t1 t2 i1 => inum t1 i1 + total_num t2434

| IUnionR t1 t2 i2 => inum t2 i2435

end.436437

This function then lets us define the key theorem needed for the induction principle. At each438

step, the value of inum decreases by 1, and since it cannot be negative, the iterator must439

therefore reach a final state.440

I Lemma 4 (Monotonicity). If next t it = it′ then inum t it = 1 + inum t it′.441

It is not possible to define an induction principle over next. By monotonicy, next eventually442

reaches a final state. For any property of interest, if we prove that it holds of the final state443

and for the induction step, we can prove it holds for every state for that type.444

I Theorem 5 (Tree Iterator Induction). Let P be any property of tree iterators for some type445

t. Suppose P holds of the final state, and whenever P holds of a successor state it then it446

holds of its precursor it′ where next t it′ = it. Then P holds of every iterator state over t.447

Now, one can prove correctness of the subtyping algorithm with tree iterators. We implement448

subtyping with respect to choice lists in the Coq implementation by deciding subtyping449

between the two union-free types induced by the iterators over the two original types, avoiding450

having to prove termination of the combined algorithm. The decision procedure implemented451

in sub first uses here on both types and their iterators to pick the union-free components of452

each original type given by their iterators, then calls ufsub to decide union-free subtyping453

between them.454

This procedure needs two helpers, here and ufsub. The function here walks the given455

iterator, producing a union-free type mirroring its state. To decide subtyping between the456

resulting union-free types, ufsub checks equality between Prim s and recurses on the elements457

of Tuple s, while returning false for all other types. Since here will never produce a union458

type, the case of ufsub for them is irrelevant, and is false by default.459

460

461
Fixpoint here (t:Typ)(i:iter t):Typ :=462

match i with463

| IPrim i => Prim i464

| ITuple t1 t2 p1 p2 => Tuple (here t1 p1) (here t2 p2)465

| ILeft t1 t2 pl => (here t1 pl)466

| IRight t1 t2 pr => (here t2 pr)467

end.468

469

Fixpoint ufsub(t1 t2:Typ) :=470

ECOOP

23:12 Subtyping union types and covariant tuples

match (t1 , t2) with471

| (Prim p, Prim p') => Nat.eqb p p'472

| (Tuple a a', Tuple b b') =>473

andb (ufsub a b) (ufsub a' b ')474

| (_, _) => false475

end.476

477

Definition sub (a b:Typ) (ai:iter a) (bi:iter b) :=478

ufsub (here a ai) (here b bi).479480

Versions of exist and allexist that use tree iterators are given next. They are similar to481

the string iterator functions of Section 2.2. exist tests if the subtyping relation holds in482

the context of the current iterator states for both sides. If not, it recurs on the next state.483

Similarly, allexist uses its iterator for a in conjunction with exist to ensure that the current484

left hand iterator state has a matching right hand state. We prove termination of both using485

Lemma 4.486

487

488
Definition subtype (a b:Typ) = allexist a b (initial a)489

490

Program Fixpoint allexist (a b:typ)(ia:iter a) { measure (inum ia)} =491

exists a b ia (initial b) &&492

(match next a ia with493

| Some(ia ') => allexist a b ia '494

| None => true).495

496

Program Fixpoint exist(a b:typ)(ia:iter a)(ib:iter b)497

{ measure (inum ib)} =498

subtype a b ia ib ||499

(match next b ib with500

| Some(ib ') => exist a b ia ib '501

| None => false).502503

The denotation of a tree iterator state R(i) is the set of states that can be reached using504

next from i. Let a(i) indicate the union-free type produced from the type a at i, and |i|a is505

the set {a(i′) | i′ ∈ R(i)}, the union-free types that result from states in the type a reachable506

by i. This lets us prove that the set of types corresponding to states reachable from the507

initial state of an iterator is equal to the set of states denoted by the type itself.508

I Lemma 6 (Initial equivalence). |initial a|a = JaK.509

Next, Theorem 5 allows us to show that exists of a, b, with ia and ib will try to find an510

iterator state i′
b starting from ib such that b(i′

b) = a(ia). The desired property trivially holds511

when |ib|b = ∅, and if the iterator can step then either the current union-free type is satisfying512

or we defer to the induction hypothesis.513

I Theorem 7. exist a b ia ib holds iff ∃t ∈ |ib|b, a(ia) = t.514

We can then appeal to both Theorem 7 and Lemma 6 to show that exist a b ia (initial b)515

will find a satisfying union-free type on the right hand side if it exists in JbK. Using this, we516

can then use Theorem 5 in an analogous way to exist to show that allexist is correct up to517

the current iterator state.518

I Theorem 8. allexist a b ia holds iff ∀a′ ∈ |ia|a,∃b′ ∈ JbK, a′ = b′.519

B. Chung, F. Zappa Nardelli, J. Vitek 23:13

Finally, we can appeal to Theorem 8 and Lemma 6 again to show the subtyping algorithm520

to be correct.521

I Theorem 9. subtype a b holds iff ∀a′ ∈ JaK,∃b′ ∈ JbK, a′ = b′.522

3.3 Subtyping with Choice Strings523

We prove the subtyping algorithm using choice strings by showing that string iterators524

simulate tree iterators. To relate tree iterators to choice string iterators, we use the itp525

function, which traverses a tree iterator state and produces a choice string using a depth-first526

search.527

ECOOP

23:14 Subtyping union types and covariant tuples

528
529

Fixpoint itp{t:Typ }(it:iter t): choice list :=530

match it with531

| IPrim _ => nil532

| ITuple t1 t2 it1 it2 => (itp t1 it1)++(itp t2 it2)533

| ILeft t1 _ it1 => Left ::(itp t1 it1)534

| IRight _ t2 it1 => Right ::(itp t2 it1)535

end.536537

Next, in order to show that the choice string iteration order is exhibited when linearizing538

tree iterators into choice strings. The next function in Section 2.2 worked by finding the last539

L in the choice string, turning it into an R, and replacing the rest with Ls until the type was540

valid. If we use itp to translate both the initial and final states for a valid next step of a541

tree iterator, we see the same structure.542

I Lemma 10 (Linearized Iteration). For some type t and tree iterators it it′, if next t it = it′,543

there exists some prefix c′, an initial suffix c′′ made up of Rs, and a final suffix c′′′ consisting544

of Ls such that itp t it = c′ Left c′′ and itp t it′ = c′ Right c′′′.545

We can then prove that stepping a tree iterator state is equivalent to stepping the linearized546

versions of the state using the choice string next function.547

I Lemma 11 (Step Equivalence). If it and it′ are tree iterator states and next it = it′, then548

next(itp it) = (itp it′).549

Finally, the initial state of a tree iterator linearizes to the initial state of a choice string550

iterator.551

I Lemma 12 (Initial Equivalence). itp(initial t) = pad t [].552

The functions exist and allexist for choice string based iterators are identical to those553

for tree iterators (though using choice string iterators internally), and sub is as described in554

Section 2.2. The proofs of correctness for the choice string subtype decision functions use555

the tree iterator induction principle (Theorem 5), and are thus in terms of tree iterators. By556

Lemma 11, however, each step that the tree iterator takes will be mirrored precisely itp557

into choice strings. Similarly, the initial states are identical by Lemma 12. As a result, the558

sequence of states checked by each of the iterators is equivalent with itp.559

I Lemma 13. exist a b (itp ia)(itp ib) holds iff ∃t ∈ |ib|b, a(ia) = t.560

With the correctness of exist following from the tree iterator definition, we can apply the561

same proof methodology to show that allexist is correct when over translated tree iterators.562

In order to do so, we instantiate Lemma 13 with Lemma 6 and Lemma 12 to show that if563

exist a b (itp ia) (pad t []) then ∃t ∈ JbK, a(ia) = t, allowing us to check each of the exists564

cases while establishing the forall-exists relationship.565

I Lemma 14. allexist a b(itp ia) holds iff ∀a′ ∈ |ia|a,∃b′ ∈ JbK, a′ = b′.566

We can then instantiate Lemma 14 with Lemma 12 and Lemma 6 to show that allexist for567

choice strings ensures that the forall-exists relation holds.568

I Theorem 15. allexist a b (pad t []) holds iff ∀a′ ∈ JaK,∃b′ ∈ JbK, a′ = b′.569

Finally, we can prove that subtyping is correct using the choice string algorithm.570

I Theorem 16. subtype a b holds iff ∀a′ ∈ JaK,∃b′ ∈ JbK, a′ = b′.571

Thus, we can correctly decide subtyping with distributive unions and tuples using the choice572

list based implementation of iterators.573

B. Chung, F. Zappa Nardelli, J. Vitek 23:15

4 Complexity574

Worst case time complexity of Julia’s subtyping algorithm and normalization-based approaches575

is determined by the number of terms that would exist in the normalized type. In the worst576

case, there are 2n union-free tuples in the fully normalized version of a type that has n577

unions. Each of these tuples must always be explored. As a result, both algorithms have578

worst-case O(2n) time complexity. The approaches differ, however, in space complexity. The579

normalization approach computes and stores each of the exponentially many alternatives, so580

also has O(2n) space complexity. However, Julia need only store the choice made at each581

union, thereby offering O(n) space complexity.582

Julia’s algorithm improves best-case time performance. Normalization always experiences583

worst case time and space behavior as it has to precompute the entire normalized type.584

Julia’s iteration-based algorithm can discover the relation between types early. In practice,585

many queries are of the form uft <: union(t1...tn) where uft is an already union-free tuple.586

As a result, all that Julia needs to do is find one matching tuple in t1...tn, which could be587

handled quickly by a fast path.588

5 Conclusion589

We have described and proven correct a subtyping algorithm for covariant tuples and unions590

that use iterators instead of normalization. This algorithm is able to decide subtyping in the591

presence of distributive semantics for union over tuples.592

Future work is to handle some additional features of the Julia language. Our next steps593

will be subtyping for primitive tpyes, existential type variables, and invariant constructors.594

Adding a subtyping to primitive types would be the simplest change. The challenge is595

how to retain completeness, as a primitive subtype heirarchy and semantic subtyping have596

undesirable interactions. For example, if the primitive subtype hierarchy contains only597

the relations p2 <: p1 and p3 <: p1, then is p1 a subtype of Union{p2, p3}? In a semantic598

subtyping system, they are, but this requires changes both to the denotational framework599

and the search space of the iterators. Existential type variables create substantial new600

complexities in the state of the algorithm. No longer is the state solely restricted to that of601

the iterators being attempted; now, the state includes variable bounds that are accumulated602

as the algorithm compares types to type variables. As a result, correctness becomes a much603

more complex contextually-linked property to prove. Finally, invariant type constructors604

induce contravariant subtyping, which in the context of existential type variables has the605

potential to create cycles within the subtyping relation. As a consequence, the termination of606

our algorithm comes into question even if the language is otherwise limited to avoid provable607

non-termination.608

Acknowledgments609

The authors thank Jiahao Chen for starting us down the path of understanding Julia, and610

Jeff Bezanson for coming up with Julia’s subtyping algorithm. This work received funding611

from the European Research Council under the European Union’s Horizon 2020 research612

and innovation programme (grant agreement 695412), the NSF (award 1544542 and award613

1518844), the ONR (grant 503353), and the Czech Ministry of Education, Youth and Sports614

(grant agreement CZ.02.1.01/0.0/0.0/15_003/0000421).615

ECOOP

23:16 Subtyping union types and covariant tuples

References616

1 Hack. https://hacklang.org/. Accessed: 2019-01-11.617

2 Typescript language specification. URL: https://github.com/Microsoft/TypeScript/blob/618

master/doc/spec.md.619

3 Alexander Aiken and Brian R. Murphy. Implementing regular tree expressions. In Functional620

Programming Languages and Computer Architecture, 1991. doi:10.1007/3540543961_21.621

4 Franco Barbanera and Mariangiola Dezani-Ciancaglini. Intersection and union types. In622

International Symposium on Theoretical Aspects of Computer Software, 1991. doi:10.1007/623

3-540-54415-1_69.624

5 Jeff Bezanson. Abstraction in Technical Computing. PhD thesis, Massachusetts Institute of625

Technology, 2015.626

6 Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A fresh approach627

to numerical computing. SIAM Review, 59(1), 2017. doi:10.1137/141000671.628

7 Flemming M. Damm. Subtyping with union types, intersection types and recursive types. In629

Theoretical Aspects of Computer Software, International Conference TACS ’94, Sendai, Japan,630

April 19-22, 1994, Proceedings, pages 687–706, 1994. doi:10.1007/3-540-57887-0_121.631

8 Joshua Dunfield. Elaborating intersection and union types. J. Funct. Program., 24(2-3):133–165,632

2014. doi:10.1017/S0956796813000270.633

9 Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic subtyping. In Symposium634

on Logic in Computer Science (LICS), 2002. doi:10.1109/LICS.2002.1029823.635

10 Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic subtyping: Dealing636

set-theoretically with function, union, intersection, and negation types. J. ACM, 55(4), 2008.637

doi:10.1145/1391289.1391293.638

11 Fabian Muehlboeck and Ross Tate. Empowering union and intersection types with integrated639

subtyping. Proc. ACM Program. Lang., 2(OOPSLA), 2018. doi:10.1145/3276482.640

12 David J. Pearce. Sound and complete flow typing with unions, intersections and negations.641

In Verification, Model Checking, and Abstract Interpretation, 14th International Conference,642

VMCAI 2013, Rome, Italy, January 20-22, 2013. Proceedings, pages 335–354, 2013. doi:643

10.1007/978-3-642-35873-9_21.644

13 Benjamin Pierce. Programming with intersection types, union types, and polymorphism.645

Technical Report CMU-CS-91-106, Carnegie Mellon University, 1991.646

14 Jerome Vouillon. Subtyping union types. In Computer Science Logic (CSL), 2004. doi:647

10.1007/978-3-540-30124-0_32.648

15 Francesco Zappa Nardelli, Julia Belyakova, Artem Pelenitsyn, Benjamin Chung, Jeff Bezanson,649

and Jan Vitek. Julia subtyping: A rational reconstruction. Proc. ACM Program. Lang.,650

2(OOPSLA), 2018. doi:10.1145/3276483.651

https://hacklang.org/
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
http://dx.doi.org/10.1007/3540543961_21
http://dx.doi.org/10.1007/3-540-54415-1_69
http://dx.doi.org/10.1007/3-540-54415-1_69
http://dx.doi.org/10.1007/3-540-54415-1_69
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1007/3-540-57887-0_121
http://dx.doi.org/10.1017/S0956796813000270
http://dx.doi.org/10.1109/LICS.2002.1029823
http://dx.doi.org/10.1145/1391289.1391293
http://dx.doi.org/10.1145/3276482
http://dx.doi.org/10.1007/978-3-642-35873-9_21
http://dx.doi.org/10.1007/978-3-642-35873-9_21
http://dx.doi.org/10.1007/978-3-642-35873-9_21
http://dx.doi.org/10.1007/978-3-540-30124-0_32
http://dx.doi.org/10.1007/978-3-540-30124-0_32
http://dx.doi.org/10.1007/978-3-540-30124-0_32
http://dx.doi.org/10.1145/3276483

	Introduction
	A space-efficient subtyping algorithm
	Normalization
	Iteration with Choice Strings
	Subtyping with Iteration
	Further optimization

	Correctness and Completeness of Subtyping
	Subtyping with Normalization
	Subtyping with Tree Iterators
	Subtyping with Choice Strings

	Complexity
	Conclusion

