2 Search Results for "Devroye, Luc"


Document
Flajolet Award Lecture
OMG: GW, CLT, CRT and CFTP (Flajolet Award Lecture)

Authors: Luc Devroye

Published in: LIPIcs, Volume 110, 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)


Abstract
After a brief review of the main results on Galton-Watson trees from the past two decades, we will discuss a few recent results in the field.

Cite as

Luc Devroye. OMG: GW, CLT, CRT and CFTP (Flajolet Award Lecture). In 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 110, p. 1:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{devroye:LIPIcs.AofA.2018.1,
  author =	{Devroye, Luc},
  title =	{{OMG: GW, CLT, CRT and CFTP}},
  booktitle =	{29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)},
  pages =	{1:1--1:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-078-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{110},
  editor =	{Fill, James Allen and Ward, Mark Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2018.1},
  URN =		{urn:nbn:de:0030-drops-88943},
  doi =		{10.4230/LIPIcs.AofA.2018.1},
  annote =	{Keywords: Galton-Watson trees, applied probability, asymptotics, simply generated trees}
}
Document
Exact Classical Simulation of the GHZ Distribution

Authors: Gilles Brassard, Luc Devroye, and Claude Gravel

Published in: LIPIcs, Volume 27, 9th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2014)


Abstract
John Bell has shown that the correlations entailed by quantum mechanics cannot be reproduced by a classical process involving non-communicating parties. But can they be simulated with the help of bounded communication? This problem has been studied for more than twenty years and it is now well understood in the case of bipartite entanglement. However, the issue was still widely open for multipartite entanglement, even for the simplest case, which is the tripartite Greenberger-Horne-Zeilinger (GHZ) state. We give an exact simulation of arbitrary independent von Neumann measurements on general n-partite GHZ states. Our protocol requires O(n^2) bits of expected communication between the parties, and O(n*log(n)) expected time is sufficient to carry it out in parallel. Furthermore, we need only an expectation of O(n) independent unbiased random bits, with no need for the generation of continuous real random variables nor prior shared random variables. In the case of equatorial measurements, we improve earlier results with a protocol that needs only O(n*log(n)) bits of communication and O(log^2(n)) parallel time. At the cost of a slight increase in the number of bits communicated, these tasks can be accomplished with a constant expected number of rounds.

Cite as

Gilles Brassard, Luc Devroye, and Claude Gravel. Exact Classical Simulation of the GHZ Distribution. In 9th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 27, pp. 7-23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{brassard_et_al:LIPIcs.TQC.2014.7,
  author =	{Brassard, Gilles and Devroye, Luc and Gravel, Claude},
  title =	{{Exact Classical Simulation of the GHZ Distribution}},
  booktitle =	{9th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2014)},
  pages =	{7--23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-73-6},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{27},
  editor =	{Flammia, Steven T. and Harrow, Aram W.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2014.7},
  URN =		{urn:nbn:de:0030-drops-48025},
  doi =		{10.4230/LIPIcs.TQC.2014.7},
  annote =	{Keywords: Entanglement simulation, Greenberger-Horne-Zeilinger (GHZ) state, Multiparty entanglement, von Neumann's rejection algorithm, Knuth-Yao's sampling alg}
}
  • Refine by Author
  • 2 Devroye, Luc
  • 1 Brassard, Gilles
  • 1 Gravel, Claude

  • Refine by Classification
  • 1 Mathematics of computing → Probability and statistics
  • 1 Mathematics of computing → Trees

  • Refine by Keyword
  • 1 Entanglement simulation
  • 1 Galton-Watson trees
  • 1 Greenberger-Horne-Zeilinger (GHZ) state
  • 1 Knuth-Yao's sampling alg
  • 1 Multiparty entanglement
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2014
  • 1 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail