When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SOCG.2015.754
URN: urn:nbn:de:0030-drops-51178
Go to the corresponding LIPIcs Volume Portal

Awasthi, Pranjal ; Charikar, Moses ; Krishnaswamy, Ravishankar ; Sinop, Ali Kemal

The Hardness of Approximation of Euclidean k-Means

34.pdf (0.5 MB)


The Euclidean k-means problem is a classical problem that has been extensively studied in the theoretical computer science, machine learning and the computational geometry communities. In this problem, we are given a set of n points in Euclidean space R^d, and the goal is to choose k center points in R^d so that the sum of squared distances of each point to its nearest center is minimized. The best approximation algorithms for this problem include a polynomial time constant factor approximation for general k and a (1+c)-approximation which runs in time poly(n) exp(k/c). At the other extreme, the only known computational complexity result for this problem is NP-hardness [Aloise et al.'09]. The main difficulty in obtaining hardness results stems from the Euclidean nature of the problem, and the fact that any point in R^d can be a potential center. This gap in understanding left open the intriguing possibility that the problem might admit a PTAS for all k, d. In this paper we provide the first hardness of approximation for the Euclidean k-means problem. Concretely, we show that there exists a constant c > 0 such that it is NP-hard to approximate the k-means objective to within a factor of (1+c). We show this via an efficient reduction from the vertex cover problem on triangle-free graphs: given a triangle-free graph, the goal is to choose the fewest number of vertices which are incident on all the edges. Additionally, we give a proof that the current best hardness results for vertex cover can be carried over to triangle-free graphs. To show this we transform G, a known hard vertex cover instance, by taking a graph product with a suitably chosen graph H, and showing that the size of the (normalized) maximum independent set is almost exactly preserved in the product graph using a spectral analysis, which might be of independent interest.

BibTeX - Entry

  author =	{Pranjal Awasthi and Moses Charikar and Ravishankar Krishnaswamy and Ali Kemal Sinop},
  title =	{{The Hardness of Approximation of Euclidean k-Means}},
  booktitle =	{31st International Symposium on Computational Geometry (SoCG 2015)},
  pages =	{754--767},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-83-5},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{34},
  editor =	{Lars Arge and J{\'a}nos Pach},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-51178},
  doi =		{10.4230/LIPIcs.SOCG.2015.754},
  annote =	{Keywords: Euclidean k-means, Hardness of Approximation, Vertex Cover}

Keywords: Euclidean k-means, Hardness of Approximation, Vertex Cover
Seminar: 31st International Symposium on Computational Geometry (SoCG 2015)
Issue Date: 2015
Date of publication: 11.06.2015

DROPS-Home | Fulltext Search | Imprint Published by LZI