License
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2016.56
URN: urn:nbn:de:0030-drops-62273
URL: http://drops.dagstuhl.de/opus/volltexte/2016/6227/
Go to the corresponding LIPIcs Volume Portal


Bonacina, Ilario

Total Space in Resolution Is at Least Width Squared

pdf-format:
LIPIcs-ICALP-2016-56.pdf (0.5 MB)


Abstract

Given an unsatisfiable k-CNF formula phi we consider two complexity measures in Resolution: width and total space. The width is the minimal W such that there exists a Resolution refutation of phi with clauses of at most W literals. The total space is the minimal size T of a memory used to write down a Resolution refutation of phi where the size of the memory is measured as the total number of literals it can contain. We prove that T = Omega((W - k)^2).

BibTeX - Entry

@InProceedings{bonacina:LIPIcs:2016:6227,
  author =	{Ilario Bonacina},
  title =	{{Total Space in Resolution Is at Least Width Squared}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{56:1--56:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Ioannis Chatzigiannakis and Michael Mitzenmacher and Yuval Rabani and Davide Sangiorgi},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2016/6227},
  URN =		{urn:nbn:de:0030-drops-62273},
  doi =		{10.4230/LIPIcs.ICALP.2016.56},
  annote =	{Keywords: Resolution, width, total space}
}

Keywords: Resolution, width, total space
Seminar: 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)
Issue Date: 2016
Date of publication: 17.08.2016


DROPS-Home | Imprint | Privacy Published by LZI