License
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.FSTTCS.2018.6
URN: urn:nbn:de:0030-drops-99050
URL: http://drops.dagstuhl.de/opus/volltexte/2018/9905/
Go to the corresponding LIPIcs Volume Portal


Saptharishi, Ramprasad ; Tengse, Anamay

Quasipolynomial Hitting Sets for Circuits with Restricted Parse Trees

pdf-format:
LIPIcs-FSTTCS-2018-6.pdf (0.5 MB)


Abstract

We study the class of non-commutative Unambiguous circuits or Unique-Parse-Tree (UPT) circuits, and a related model of Few-Parse-Trees (FewPT) circuits (which were recently introduced by Lagarde, Malod and Perifel [Guillaume Lagarde et al., 2016] and Lagarde, Limaye and Srinivasan [Guillaume Lagarde et al., 2017]) and give the following constructions: - An explicit hitting set of quasipolynomial size for UPT circuits, - An explicit hitting set of quasipolynomial size for FewPT circuits (circuits with constantly many parse tree shapes), - An explicit hitting set of polynomial size for UPT circuits (of known parse tree shape), when a parameter of preimage-width is bounded by a constant. The above three results are extensions of the results of [Manindra Agrawal et al., 2015], [Rohit Gurjar et al., 2015] and [Rohit Gurjar et al., 2016] to the setting of UPT circuits, and hence also generalize their results in the commutative world from read-once oblivious algebraic branching programs (ROABPs) to UPT-set-multilinear circuits. The main idea is to study shufflings of non-commutative polynomials, which can then be used to prove suitable depth reduction results for UPT circuits and thereby allow a careful translation of the ideas in [Manindra Agrawal et al., 2015], [Rohit Gurjar et al., 2015] and [Rohit Gurjar et al., 2016].

BibTeX - Entry

@InProceedings{saptharishi_et_al:LIPIcs:2018:9905,
  author =	{Ramprasad Saptharishi and Anamay Tengse},
  title =	{{Quasipolynomial Hitting Sets for Circuits with Restricted Parse Trees}},
  booktitle =	{38th IARCS Annual Conference on Foundations of Software  Technology and Theoretical Computer Science (FSTTCS 2018)},
  pages =	{6:1--6:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-093-4},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{122},
  editor =	{Sumit Ganguly and Paritosh Pandya},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2018/9905},
  URN =		{urn:nbn:de:0030-drops-99050},
  doi =		{10.4230/LIPIcs.FSTTCS.2018.6},
  annote =	{Keywords: Unambiguous Circuits, Read-once Oblivious ABPs, Polynomial Identity Testing, Lower Bounds, Algebraic Circuit Complexity}
}

Keywords: Unambiguous Circuits, Read-once Oblivious ABPs, Polynomial Identity Testing, Lower Bounds, Algebraic Circuit Complexity
Seminar: 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018)
Issue Date: 2018
Date of publication: 23.11.2018


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI