License
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-24451
URL:

; ; ;

Evasiveness and the Distribution of Prime Numbers

pdf-format:


Abstract

A Boolean function on $N$ variables is called \emph{evasive} if its decision-tree complexity is $N$. A sequence $B_n$ of Boolean functions is \emph{eventually evasive} if $B_n$ is evasive for all sufficiently large $n$. We confirm the eventual evasiveness of several classes of monotone graph properties under widely accepted number theoretic hypotheses. In particular we show that Chowla's conjecture on Dirichlet primes implies that (a) for any graph $H$, ``forbidden subgraph $H$'' is eventually evasive and (b) all nontrivial monotone properties of graphs with $\le n^{3/2-\epsilon}$ edges are eventually evasive. ($n$ is the number of vertices.) While Chowla's conjecture is not known to follow from the Extended Riemann Hypothesis (ERH, the Riemann Hypothesis for Dirichlet's $L$ functions), we show (b) with the bound $O(n^{5/4-\epsilon})$ under ERH. We also prove unconditional results: (a$'$) for any graph $H$, the query complexity of ``forbidden subgraph $H$'' is $\binom{n}{2} - O(1)$; (b$'$) for some constant $c>0$, all nontrivial monotone properties of graphs with $\le cn\log n+O(1)$ edges are eventually evasive. Even these weaker, unconditional results rely on deep results from number theory such as Vinogradov's theorem on the Goldbach conjecture. Our technical contribution consists in connecting the topological framework of Kahn, Saks, and Sturtevant (1984), as further developed by Chakrabarti, Khot, and Shi (2002), with a deeper analysis of the orbital structure of permutation groups and their connection to the distribution of prime numbers. Our unconditional results include stronger versions and generalizations of some result of Chakrabarti et al.

BibTeX - Entry

@InProceedings{babai_et_al:LIPIcs:2010:2445,
  author =	{L{\'a}szl{\'o} Babai and Anandam Banerjee and Raghav Kulkarni and Vipul Naik},
  title =	{{Evasiveness  and the Distribution of Prime Numbers}},
  booktitle =	{27th International Symposium on Theoretical Aspects of Computer Science},
  pages =	{71--82},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-16-3},
  ISSN =	{1868-8969},
  year =	{2010},
  volume =	{5},
  editor =	{Jean-Yves Marion and Thomas Schwentick},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2010/2445},
  URN =		{urn:nbn:de:0030-drops-24451},
  doi =		{http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2445},
  annote =	{Keywords: Decision tree complexity, evasiveness, graph property, group action, Dirichlet primes, Extended Riemann Hypothesis}
}

Keywords: Decision tree complexity, evasiveness, graph property, group action, Dirichlet primes, Extended Riemann Hypothesis
Seminar: 27th International Symposium on Theoretical Aspects of Computer Science
Issue date: 2010
Date of publication: 2010


DROPS-Home | Fulltext Search | Imprint Published by LZI