Energy Consumption of Group Search on a Line

Authors Jurek Czyzowicz, Konstantinos Georgiou, Ryan Killick, Evangelos Kranakis, Danny Krizanc, Manuel Lafond, Lata Narayanan, Jaroslav Opatrny, Sunil Shende



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2019.137.pdf
  • Filesize: 0.57 MB
  • 15 pages

Document Identifiers

Author Details

Jurek Czyzowicz
  • Université du Québec en Outaouais, Gatineau, Québec, Canada
Konstantinos Georgiou
  • Department of Mathematics, Ryerson University, Toronto, Ontario, Canada
Ryan Killick
  • School of Computer Science, Carleton University, Ottawa, Ontario, Canada
Evangelos Kranakis
  • School of Computer Science, Carleton University, Ottawa, Ontario, Canada
Danny Krizanc
  • Department of Mathematics & Comp. Sci., Wesleyan University, Middletown, CT, USA
Manuel Lafond
  • Department of Computer Science, Université de Sherbrooke, Sherbrooke, Québec, Canada
Lata Narayanan
  • Department of Comp. Sci. and Software Eng., Concordia University, Montreal, Québec, Canada
Jaroslav Opatrny
  • Department of Comp. Sci. and Software Eng., Concordia University, Montreal, Québec, Canada
Sunil Shende
  • Department of Computer Science, Rutgers University, Camden, NJ, USA

Cite AsGet BibTex

Jurek Czyzowicz, Konstantinos Georgiou, Ryan Killick, Evangelos Kranakis, Danny Krizanc, Manuel Lafond, Lata Narayanan, Jaroslav Opatrny, and Sunil Shende. Energy Consumption of Group Search on a Line. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 137:1-137:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.ICALP.2019.137

Abstract

Consider two robots that start at the origin of the infinite line in search of an exit at an unknown location on the line. The robots can collaborate in the search, but can only communicate if they arrive at the same location at exactly the same time, i.e. they use the so-called face-to-face communication model. The group search time is defined as the worst-case time as a function of d, the distance of the exit from the origin, when both robots can reach the exit. It has long been known that for a single robot traveling at unit speed, the search time is at least 9d - o(d); a simple doubling strategy achieves this time bound. It was shown recently in [Chrobak et al., 2015] that k >= 2 robots traveling at unit speed also require at least 9d group search time. We investigate energy-time trade-offs in group search by two robots, where the energy loss experienced by a robot traveling a distance x at constant speed s is given by s^2 x, as motivated by energy consumption models in physics and engineering. Specifically, we consider the problem of minimizing the total energy used by the robots, under the constraints that the search time is at most a multiple c of the distance d and the speed of the robots is bounded by b. Motivation for this study is that for the case when robots must complete the search in 9d time with maximum speed one (b=1; c=9), a single robot requires at least 9d energy, while for two robots, all previously proposed algorithms consume at least 28d/3 energy. When the robots have bounded memory and can use only a constant number of fixed speeds, we generalize an algorithm described in [Baeza-Yates and Schott, 1995; Chrobak et al., 2015] to obtain a family of algorithms parametrized by pairs of b,c values that can solve the problem for the entire spectrum of these pairs for which the problem is solvable. In particular, for each such pair, we determine optimal (and in some cases nearly optimal) algorithms inducing the lowest possible energy consumption. We also propose a novel search algorithm that simultaneously achieves search time 9d and consumes energy 8.42588d. Our result shows that two robots can search on the line in optimal time 9d while consuming less total energy than a single robot within the same search time. Our algorithm uses robots that have unbounded memory, and a finite number of dynamically computed speeds. It can be generalized for any c, b with cb=9, and consumes energy 8.42588b^2d.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Mobile agents
  • Theory of computation → Online algorithms
Keywords
  • Evacuation
  • Exit
  • Line
  • Face-to-face Communication
  • Robots
  • Search

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. S. Alpern and S. Gal. The theory of search games and rendezvous. Springer, 2003. Google Scholar
  2. R. Baeza Yates, J. Culberson, and G. Rawlins. Searching in the plane. Information and Computation, 106(2):234-252, 1993. Google Scholar
  3. R. Baeza-Yates and R. Schott. Parallel searching in the plane. Computational Geometry, 5(3):143-154, 1995. Google Scholar
  4. E. Bampas, J. Czyzowicz, L. Gasieniec, D. Ilcinkas, R. Klasing, T. Kociumaka, and D. Pajak. Linear search by a pair of distinct-speed robots. Algorithmica, 81(1):317-342, 2019. Google Scholar
  5. G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge Mathematical Library. Cambridge University Press, 2000. Google Scholar
  6. A. Beck. On the linear search problem. Israel J. of Mathematics, 2(4):221-228, 1964. Google Scholar
  7. R. Bellman. An optimal search. SIAM Review, 5(3):274-274, 1963. Google Scholar
  8. M. Blum and D. Kozen. On the power of the compass (or, why mazes are easier to search than graphs). In FOCS, pages 132-142, 1978. Google Scholar
  9. P. Bose and J.-L. De Carufel. A General Framework for Searching on a Line. Theoretical Computer Science, pages 703:1-17, 2017. Google Scholar
  10. P. Bose, J.-L. De Carufel, and S. Durocher. Searching on a line: A complete characterization of the optimal solution. Theoretical Computer Science, pages 569:24-42, 2015. Google Scholar
  11. S. Brandt, K.-T. Foerster, B. Richner, and R. Wattenhofer. Wireless Evacuation on m Rays with k Searchers. In SIROCCO, pages 140-157, 2017. Google Scholar
  12. S. Brandt, F. Laufenberg, Y. Lv, D. Stolz, and R. Wattenhofer. Collaboration without Communication: Evacuating Two Robots from a Disk. In CIAC, pages 104-115, 2017. Google Scholar
  13. S. Brandt, J. Uitto, and R. Wattenhofer. A Tight Lower Bound for Semi-Synchronous Collaborative Grid Exploration. In DISC, pages 13:1-13:17, 2018. Google Scholar
  14. L. Budach. Automata and labyrinths. Math. Nachrichten, 86:195–282, 1978. Google Scholar
  15. M. Chrobak, L. Gasieniec, Gorry T., and R. Martin. Group Search on the Line. In SOFSEM, pages 164-176. Springer, 2015. Google Scholar
  16. H. Chuangpishit, K. Georgiou, and P. Sharma. Average Case - Worst Case Tradeoffs for Evacuating 2 Robots from the Disk in the Face-to-Face Model. In ALGOSENSORS'18. Springer, 2018. Google Scholar
  17. S. A. Cook and C. Rackoff. Space lower bounds for maze threadability on restricted machines. SIAM Journal on Computing, 9(3):636–652, 1980. Google Scholar
  18. J. Czyzowicz, L. Gasieniec, T. Gorry, E. Kranakis, R. Martin, and D. Pajak. Evacuating Robots via Unknown Exit in a Disk. In DISC, pages 122-136. Springer, 2014. Google Scholar
  19. J. Czyzowicz, K. Georgiou, R. Killick, E. Kranakis, D. Krizanc, L. Narayanan, J. Opatrny, and S. Shende. God Save the Queen. In (FUN), pages 16:1-16:20, 2018. Google Scholar
  20. J. Czyzowicz, K. Georgiou, R. Killick, E. Kranakis, D. Krizanc, L. Narayanan, J. Opatrny, and S. Shende. Priority Evacuation from a Disk Using Mobile Robots. In SIROCCO, pages 209-225, 2018. Google Scholar
  21. J. Czyzowicz, K. Georgiou, R. Killick, E. Kranakis, M. Lafond, D. Krizanc, L. Narayanan, J. Opatrny, and S. Shence. Energy Consumption of Group Search on a Line. CoRR, abs/1904.09714, 2019. URL: http://arxiv.org/abs/1904.09714.
  22. J. Czyzowicz, K. Georgiou, and E. Kranakis. Group Search and Evacuation. In Distributed Computing by Mobile Entities, Current Research in Moving and Computing, LNCS, volume 11340, pages 335-370, 2019. Google Scholar
  23. J. Czyzowicz, K. Georgiou, E. Kranakis, D. Krizanc, L. Narayanan, J. Opatrny, and S. Shende. Search on a Line by Byzantine Robots. In ISAAC, pages 27:1-27:12, 2016. Google Scholar
  24. J. Czyzowicz, K. Georgiou, E. Kranakis, L. Narayanan, J. Opatrny, and B. Vogtenhuber. Evacuating Robots from a Disc Using Face to Face Communication. In CIAC 2015, pages 140-152, 2015. Google Scholar
  25. J. Czyzowicz, E. Kranakis, D. Krizanc, L. Narayanan, and Opatrny J. Search on a Line with Faulty Robots. In PODC, pages 405-414. ACM, 2016. Google Scholar
  26. J. Czyzowicz, E. Kranakis, D. Krizanc, L. Narayanan, J. Opatrny, and M. Shende. Linear Search with Terrain-Dependent Speeds. In CIAC, pages 430-441, 2017. Google Scholar
  27. J. Czyzowicz, E. Kranakis, K. Krizanc, L. Narayanan, J. Opatrny, and S. Shende. Wireless Autonomous Robot Evacuation from Equilateral Triangles and Squares. In ADHOCNOW, pages 181-194. Springer, 2015. Google Scholar
  28. E. D. Demaine, S. P. Fekete, and S. Gal. Online searching with turn cost. Theoretical Computer Science, 361(2):342-355, 2006. Google Scholar
  29. Y. Emek, T. Langner, D. Stolz, J. Uitto, and R. Wattenhofer. How Many Ants Does it Take to Find the Food? Theor. Comput. Sci., page 608:255–267, 2015. Google Scholar
  30. S. Gal. Search Games. Wiley Encyclopedia for Operations Research and Management Science, 2011. Google Scholar
  31. K. Georgiou, G. Karakostas, and E. Kranakis. Search-and-Fetch with One Robot on a Disk - (Track: Wireless and Geometry). In ALGOSENSORS, pages 80-94, 2016. Google Scholar
  32. K. Georgiou, G. Karakostas, and E. Kranakis. Search-and-Fetch with 2 Robots on a Disk - Wireless and Face-to-Face Communication Models. In ICORES, pages 15-26. SciTePress, 2017. Google Scholar
  33. F. Hoffmann, C. Icking, R. Klein, and K. Kriegel. The polygon exploration problem. SIAM Journal on Computing, 31(2):577-600, 2001. Google Scholar
  34. M.-Y. Kao, J. H. Reif, and S. R. Tate. Searching in an unknown environment: An optimal randomized algorithm for the cow-path problem. Information and Computation, 131(1):63-79, 1996. Google Scholar
  35. J. Kleinberg. On-line search in a simple polygon. In SODA, pages 8-15. SIAM, 1994. Google Scholar
  36. I. Lamprou, R. Martin, and S. Schewe. Fast Two-Robot Disk Evacuation with Wireless Communication. In DISC, pages 1-15, 2016. Google Scholar
  37. D. Pattanayak, H. Ramesh, P.S. Mandal, and S. Schmid. Evacuating Two Robots from Two Unknown Exits on the Perimeter of a Disk with Wireless Communication. In ICDCN, pages 20:1-20:4, 2018. Google Scholar
  38. O. Reingold. Undirected st-connectivity in log-space. In STOC, pages 376-385, 2005. Google Scholar
  39. H.-A. Rollik. Automaten in planaren Graphen. Acta Informatica, 13(3):287– 298, 1980. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail