Machine Learning Meets Visualization to Make Artificial Intelligence Interpretable (Dagstuhl Seminar 19452)

Authors Enrico Bertini, Peer-Timo Bremer, Daniela Oelke, Jayaraman Thiagarajan and all authors of the abstracts in this report



PDF
Thumbnail PDF

File

DagRep.9.11.24.pdf
  • Filesize: 5.78 MB
  • 10 pages

Document Identifiers

Author Details

Enrico Bertini
  • NYU - Brooklyn, US
Peer-Timo Bremer
  • LLNL - Livermore, US
Daniela Oelke
  • Siemens AG - München, DE
Jayaraman Thiagarajan
  • LLNL - Livermore, US
and all authors of the abstracts in this report

Cite AsGet BibTex

Enrico Bertini, Peer-Timo Bremer, Daniela Oelke, and Jayaraman Thiagarajan. Machine Learning Meets Visualization to Make Artificial Intelligence Interpretable (Dagstuhl Seminar 19452). In Dagstuhl Reports, Volume 9, Issue 11, pp. 24-33, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
https://doi.org/10.4230/DagRep.9.11.24

Abstract

This report documents the program and the outcomes of Dagstuhl Seminar 19452 "Machine Learning Meets Visualization to Make Artificial Intelligence Interpretable".

Subject Classification

ACM Subject Classification
  • Human-centered computing → Visualization
  • Computing methodologies → Artificial intelligence
  • Computing methodologies → Machine learning
Keywords
  • Visualization
  • Machine Learning
  • Interpretability

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail