Nonlinear Approximation and Image Representation using Wavelets

Authors Sudipto Guha, Boulos Harb

Thumbnail PDF


  • Filesize: 0.78 MB
  • 18 pages

Document Identifiers

Author Details

Sudipto Guha
Boulos Harb

Cite AsGet BibTex

Sudipto Guha and Boulos Harb. Nonlinear Approximation and Image Representation using Wavelets. In Web Information Retrieval and Linear Algebra Algorithms. Dagstuhl Seminar Proceedings, Volume 7071, pp. 1-18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2007)


We address the problem of finding sparse wavelet representations of high-dimensional vectors. We present a lower-bounding technique and use it to develop an algorithm for computing provably-approximate instance-specific representations minimizing general $ell_p$ distances under a wide variety of compactly-supported wavelet bases. More specifically, given a vector $f in mathbb{R}^n$, a compactly-supported wavelet basis, a sparsity constraint $B in mathbb{Z}$, and $pin[1,infty]$, our algorithm returns a $B$-term representation (a linear combination of $B$ vectors from the given basis) whose $ell_p$ distance from $f$ is a $O(log n)$ factor away from that of the optimal such representation of $f$. Our algorithm applies in the one-pass sublinear-space data streaming model of computation, and it generalize to weighted $p$-norms and multidimensional signals. Our technique also generalizes to a version of the problem where we are given a bit-budget rather than a term-budget. Furthermore, we use it to construct a emph{universal representation} that consists of at most $B(log n)^2$ terms and gives a $O(log n)$-approximation under all $p$-norms simultaneously.
  • Nonlinear approximation
  • wavelets
  • approximation algorithms
  • streaming algorithms


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail