An open question on the existence of Gabor frames in general linear position

Authors Felix Krahmer, Götz E. Pfander, Peter Rashkov



PDF
Thumbnail PDF

File

DagSemProc.08492.4.pdf
  • Filesize: 232 kB
  • 7 pages

Document Identifiers

Author Details

Felix Krahmer
Götz E. Pfander
Peter Rashkov

Cite AsGet BibTex

Felix Krahmer, Götz E. Pfander, and Peter Rashkov. An open question on the existence of Gabor frames in general linear position. In Structured Decompositions and Efficient Algorithms. Dagstuhl Seminar Proceedings, Volume 8492, pp. 1-7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)
https://doi.org/10.4230/DagSemProc.08492.4

Abstract

Uncertainty principles for functions defined on finite Abelian groups generally relate the cardinality of a function to the cardinality of its Fourier transform. We examine how the cardinality of a function is related to the cardinality of its short--time Fourier transform. We illustrate that for some cyclic groups of small order, both, the Fourier and the short--time Fourier case, show a remarkable resemblance. We pose the question whether this correspondence holds for all cyclic groups.
Keywords
  • Gabor systems
  • erasure channels
  • time--frequency dictionaries
  • short--time Fourier transform
  • uncertainty principle.

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads