DagSemProc.10302.2.pdf
- Filesize: 161 kB
- 4 pages
The seminar centered around problems which arise in the context of machine learning in dynamic environments. Particular emphasis was put on a couple of specific questions in this context: how to represent and abstract knowledge appropriately to shape the problem of learning in a partially unknown and complex environment and how to combine statistical inference and abstract symbolic representations; how to infer from few data and how to deal with non i.i.d. data, model revision and life-long learning; how to come up with efficient strategies to control realistic environments for which exploration is costly, the dimensionality is high and data are sparse; how to deal with very large settings; and how to apply these models in challenging application areas such as robotics, computer vision, or the web.
Feedback for Dagstuhl Publishing