Document Open Access Logo

An Optimal Algorithm for Large Frequency Moments Using O(n^(1-2/k)) Bits

Authors Vladimir Braverman, Jonathan Katzman, Charles Seidell, Gregory Vorsanger

Thumbnail PDF


  • Filesize: 0.5 MB
  • 14 pages

Document Identifiers

Author Details

Vladimir Braverman
Jonathan Katzman
Charles Seidell
Gregory Vorsanger

Cite AsGet BibTex

Vladimir Braverman, Jonathan Katzman, Charles Seidell, and Gregory Vorsanger. An Optimal Algorithm for Large Frequency Moments Using O(n^(1-2/k)) Bits. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 28, pp. 531-544, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2014)


In this paper, we provide the first optimal algorithm for the remaining open question from the seminal paper of Alon, Matias, and Szegedy: approximating large frequency moments. We give an upper bound on the space required to find a k-th frequency moment of O(n^(1-2/k)) bits that matches, up to a constant factor, the lower bound of Woodruff et. al for constant epsilon and constant k. Our algorithm makes a single pass over the stream and works for any constant k > 3. It is based upon two major technical accomplishments: first, we provide an optimal algorithm for finding the heavy elements in a stream; and second, we provide a technique using Martingale Sketches which gives an optimal reduction of the large frequency moment problem to the all heavy elements problem. We also provide a polylogarithmic improvement for frequency moments, frequency based functions, spatial data streams, and measuring independence of data sets.
  • Streaming Algorithms
  • Randomized Algorithms
  • Frequency Moments
  • Heavy Hitters


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail