Absorption Time of the Moran Process

Authors Josep Díaz, Leslie Ann Goldberg, David Richerby, Maria Serna

Thumbnail PDF


  • Filesize: 463 kB
  • 13 pages

Document Identifiers

Author Details

Josep Díaz
Leslie Ann Goldberg
David Richerby
Maria Serna

Cite AsGet BibTex

Josep Díaz, Leslie Ann Goldberg, David Richerby, and Maria Serna. Absorption Time of the Moran Process. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 28, pp. 630-642, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


The Moran process models the spread of mutations in populations on graphs. We investigate the absorption time of the process, which is the time taken for a mutation introduced at a randomly chosen vertex to either spread to the whole population, or to become extinct. It is known that the expected absorption time for an advantageous mutation is polynomial on an n-vertex undirected graph, which allows the behaviour of the process on undirected graphs to be analysed using the Markov chain Monte Carlo method. We show that this does not extend to directed graphs by exhibiting an infinite family of directed graphs for which the expected absorption time is exponential in the number of vertices. However, for regular directed graphs, we give the expected absorption time is blog n lower bound and an explicit quadratic upper bound. We exhibit families of graphs matching these bounds and give improved bounds for other families of graphs, based on isoperimetric number. Our results are obtained via stochastic dominations which we demonstrate by establishing a coupling in a related continuous-time model. The coupling also implies several natural domination results regarding the fixation probability of the original (discrete-time) process, resolving a conjecture of Shakarian, Roos and Johnson.
  • Moran Process


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads