Document

# Lowest Degree k-Spanner: Approximation and Hardness

## File

LIPIcs.APPROX-RANDOM.2014.80.pdf
• Filesize: 0.51 MB
• 16 pages

## Cite As

Eden Chlamtác and Michael Dinitz. Lowest Degree k-Spanner: Approximation and Hardness. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 28, pp. 80-95, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.80

## Abstract

A k-spanner is a subgraph in which distances are approximately preserved, up to some given stretch factor k. We focus on the following problem: Given a graph and a value k, can we find a k-spanner that minimizes the maximum degree? While reasonably strong bounds are known for some spanner problems, they almost all involve minimizing the total number of edges. Switching the objective to the degree introduces significant new challenges, and currently the only known approximation bound is an O~(Delta^(3-2*sqrt(2)))-approximation for the special case when k = 2 [Chlamtac, Dinitz, Krauthgamer FOCS 2012] (where Delta is the maximum degree in the input graph). In this paper we give the first non-trivial algorithm and polynomial-factor hardness of approximation for the case of general k. Specifically, we give an LP-based O~(Delta^((1-1/k)^2) )-approximation and prove that it is hard to approximate the optimum to within Delta^Omega(1/k) when the graph is undirected, and to within Delta^Omega(1) when it is directed.
##### Keywords
• Graph spanners
• approximation algorithms
• hardness of approximation

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On sparse spanners of weighted graphs. Discrete Comput. Geom., 9(1):81-100, 1993.
2. Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. Additive spanners and (α, β)-spanners. ACM Trans. Algorithms, 7(1):5:1-5:26, December 2010.
3. Mohsen Bayati, Andrea Montanari, and Amin Saberi. Generating random graphs with large girth. In SODA'09, pages 566-575, 2009.
4. Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Improved approximation for the directed spanner problem. In ICALP (1), pages 1-12, 2011.
5. Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David P. Woodruff. Transitive-closure spanners. In SODA'09, pages 932-941, 2009.
6. T.-H. Hubert Chan, Michael Dinitz, and Anupam Gupta. Spanners with slack. In Proceedings of the 14th Annual European Symposium on Algorithms, ESA, pages 196-207, 2006.
7. Barun Chandra, Gautam Das, Giri Narasimhan, and José Soares. New sparseness results on graph spanners. International Journal of Computational Geometry and Applications, 5(1):125-144, 1995.
8. S. Chechik, M. Langberg, David Peleg, and L. Roditty. Fault-tolerant spanners for general graphs. In STOC'09, pages 435-444, New York, NY, USA, 2009. ACM.
9. Shiri Chechik. New additive spanners. In SODA'13, pages 498-512, 2013.
10. Eden Chlamtáč, Michael Dinitz, and Robert Krauthgamer. Everywhere-sparse spanners via dense subgraphs. FOCS'12, 0:758-767, 2012.
11. Michael Dinitz, Guy Kortsarz, and Ran Raz. Label cover instances with large girth and the hardness of approximating basic k-spanner. In ICALP'12, pages 290-301, Berlin, Heidelberg, 2012. Springer-Verlag.
12. Michael Dinitz and Robert Krauthgamer. Directed spanners via flow-based linear programs. In STOC'11, pages 323-332, New York, NY, USA, 2011. ACM.
13. Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners: Better and simpler. In PODC'11, pages 169-178, 2011.
14. Yevgeniy Dodis and Sanjeev Khanna. Designing networks with bounded pairwise distance. In Proceedings of the Thirty-first Annual ACM Symposium on Theory of Computing, STOC'99, pages 750-759, New York, NY, USA, 1999. ACM.
15. Michael Elkin and David Peleg. The hardness of approximating spanner problems. In STACS, pages 370-381, 2000.
16. Michael Elkin and David Peleg. Strong inapproximability of the basic k-spanner problem. In ICALP, pages 636-647, 2000.
17. Michael Elkin and David Peleg. Approximating k-spanner problems for k > 2. Theor. Comput. Sci., 337(1-3):249-277, 2005.
18. Michael Elkin and Shay Solomon. Fast constructions of light-weight spanners for general graphs. In In Proc. of 24th SODA, pages 513-525, 2013.
19. Guy Kortsarz. On the hardness of approximating spanners. Algorithmica, 30(3):432-450, 2001.
20. Guy Kortsarz and David Peleg. Generating sparse 2-spanners. J. Algorithms, 17(2):222-236, 1994.
21. Guy Kortsarz and David Peleg. Generating low-degree 2-spanners. SIAM J. Comput., 27(5):1438-1456, 1998.
22. David Peleg and Alejandro A. Schäffer. Graph spanners. Journal of Graph Theory, 13(1):99-116, 1989.
23. David Peleg and Jeffrey D. Ullman. An optimal synchronizer for the hypercube. SIAM J. Comput., 18(4):740-747, 1989.
24. Mohit Singh and Lap Chi Lau. Approximating minimum bounded degree spanning trees to within one of optimal. In STOC'07, pages 661-670, 2007.
25. Mikkel Thorup and Uri Zwick. Compact routing schemes. In SPAA'01, pages 1-10, New York, NY, USA, 2001. ACM.
26. Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1-24, January 2005.