Document

# Local Algorithms for Sparse Spanning Graphs

## File

LIPIcs.APPROX-RANDOM.2014.826.pdf
• Filesize: 0.49 MB
• 17 pages

## Cite As

Reut Levi, Dana Ron, and Ronitt Rubinfeld. Local Algorithms for Sparse Spanning Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 28, pp. 826-842, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.826

## Abstract

We initiate the study of the problem of designing sublinear-time (local) algorithms that, given an edge (u,v) in a connected graph G=(V,E), decide whether (u,v) belongs to a sparse spanning graph G' = (V,E') of G. Namely, G' should be connected and |E'| should be upper bounded by (1+epsilon)|V| for a given parameter epsilon > 0. To this end the algorithms may query the incidence relation of the graph G, and we seek algorithms whose query complexity and running time (per given edge (u,v)) is as small as possible. Such an algorithm may be randomized but (for a fixed choice of its random coins) its decision on different edges in the graph should be consistent with the same spanning graph G' and independent of the order of queries. We first show that for general (bounded-degree) graphs, the query complexity of any such algorithm must be Omega(sqrt{|V|}). This lower bound holds for graphs that have high expansion. We then turn to design and analyze algorithms both for graphs with high expansion (obtaining a result that roughly matches the lower bound) and for graphs that are (strongly) non-expanding (obtaining results in which the complexity does not depend on |V|). The complexity of the problem for graphs that do not fall into these two categories is left as an open question.
##### Keywords
• local
• spanning graph
• sparse

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. N. Ailon, B. Chazelle, S. Comandur, and D. Liu. Property-preserving data reconstruction. Algorithmica, 51(2):160-182, 2008.
2. N. Alon, R. Rubinfeld, S. Vardi, and N. Xie. Space-efficient local computation algorithms. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'12), pages 1132-1139, 2012.
3. R. Andersen, C. Borgs, J. Chayes, J. Hopcroft, V. Mirrokni, and S. Teng. Local computation of pagerank contributions. Internet Mathematics, 5(1-2):23-45, 2008.
4. R. Andersen, F. Chung, and K. Lang. Local graph partitioning using pagerank vectors. In FOCS'06: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, pages 475-486, 2006.
5. R. Andersen and Y. Peres. Finding sparse cuts locally using evolving sets. In Proceedings of the Forty-First Annual ACM Symposium on the Theory of Computing, pages 235-244, 2009.
6. D. A. Bader and G. Cong. A fast, parallel spanning tree algorithm for symmetric multiprocessors (smps). J. Parallel Distrib. Comput., 65(9):994-1006, 2005.
7. P. Berkhin. Bookmark-coloring algorithm for personalized pagerank computing. Internet Mathematics, 3(1):41-62, 2006.
8. B. Bollobás. Random Graphs. Cambridge University Press, 2001.
9. Z. Brakerski. Local property restoring. Unpublished manuscript, 2008.
10. A. Campagna, A. Guo, and R. Rubinfeld. Local reconstructors and tolerant testers for connectivity and diameter. In Proceedings of the Seventeenth International Workshop on Randomization and Computation (RANDOM), pages 411-424, 2013.
11. B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the minimum spanning tree weight in sublinear time. SIAM Journal on Computing, 34(6):1370-1379, 2005.
12. B. Chazelle and C. Seshadhri. Online geometric reconstruction. In Proceedings of the Twenty-Second Annual ACM Symposium on Computation Geometry (SoCG), pages 386 - 394, 2006.
13. A. Dutta, R. Levi, D. Ron, and R. Rubinfeld. A simple online competitive adaptation of lempel-ziv compression with efficient random access support. In Proceedings of the Data Compression Conference (DCC), pages 113-122, 2013.
14. A. Edelman, A. Hassidim, H. N. Nguyen, and K. Onak. An efficient partitioning oracle for bounded-treewidth graphs. In Proceedings of the Fifteenth International Workshop on Randomization and Computation (RANDOM), pages 530-541, 2011.
15. A. Hassidim, J. A. Kelner, H. N. Nguyen, and K. Onak. Local graph partitions for approximation and testing. In Proceedings of the Fiftieth Annual Symposium on Foundations of Computer Science, pages 22-31, 2009.
16. G. Jeh and J. Widom. Scaling personalized web search. In Proceedings of the 12th International Conference on World Wide Web, pages 271-279, 2003.
17. M. Jha and S. Raskhodnikova. Testing and reconstruction of Lipschitz functions with applications to data privacy. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS), 2011.
18. S. Kale, Y. Peres, and C. Seshadhri. Noise tolerance of expanders and sublinear expander reconstruction. In Proceedings of the Forty-Ninth Annual Symposium on Foundations of Computer Science, pages 719-728, 2008.
19. J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the AMS, 7(1):48-50, 1956.
20. S. Kutten and D. Peleg. Fast distributed construction of small k-dominating sets and applications. Journal of Algorithms, 28(1):40-66, 1998.
21. R. Levi and D. Ron. A quasi-polynomial time partition oracle for graphs with an excluded minor. In 40th International Colloquium on Automata, Languages, and Programming (ICALP'13), pages 709-720, 2013.
22. R. Levi and D. Ron. A quasi-polynomial time partition oracle for graphs with an excluded minor. CoRR, abs/1302.3417, 2013.
23. Reut Levi, Dana Ron, and Ronitt Rubinfeld. Local algorithms for sparse spanning graphs. CoRR, abs/1402.3609, 2014.
24. N. Linial. Locality in distributed graph algorithms. SIAM Journal on Computing, 21(1):193-201, 1992.
25. L. Trevisan M. Sudan and S. Vadhan. Pseudorandom generators without the XOR lemma. In Proceedings of the Thirty-First Annual ACM Symposium on the Theory of Computing, pages 537-546, 1999.
26. Y. Mansour, A. Rubinstein, S. Vardi, and N. Xie. Converting online algorithms to local computation algorithms. In Automata, Languages and Programming: Thirty-Ninth International Colloquium (ICALP), pages 653-664, 2012.
27. Y. Mansour and S. Vardi. A local computation approximation scheme to maximum matching. In Proceedings of the Sixteenth International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), pages 260-273, 2013.
28. S. Marko and D. Ron. Distance approximation in bounded-degree and general sparse graphs. ACM Transactions on Algorithms, 5(2), 2009. Article number 22.
29. A. Mayer, S. Naor, and L. Stockmeyer. Local computations on static and dynamic graphs. In Proceedings of the 3rd Israel Symposium on Theory and Computing Systems (ISTCS), 1995.
30. M. Naor and L. Stockmeyer. What can be computed locally? SIAM Journal on Computing, 24(6):1259-1277, 1995.
31. H. N. Nguyen and K. Onak. Constant-time approximation algorithms via local improvements. In Proceedings of the Forty-Ninth Annual Symposium on Foundations of Computer Science, pages 327-336, 2008.
32. L. Orecchia and Z. A. Zhu. Flow-based algorithms for local graph clustering. CoRR, abs/1307.2855, 2013.
33. M. Parnas and D. Ron. Approximating the minimum vertex cover in sublinear time and a connection to distributed algorithms. Theoretical Computer Science, 381(1-3):183-196, 2007.
34. D. Peleg and V. Rubinovich. A near-tight lower bound on the time complexity of distributed minimum-weight spanning tree construction. SIAM Journal on Computing, 30(5):1427-1442, 2000.
35. S. Pettie. Distributed algorithms for ultrasparse spanners and linear size skeletons. Distributed Computing, 22(3):147-166, 2010.
36. S. Pettie and V. Ramachandran. Randomized minimum spanning tree algorithms using exponentially fewer random bits. ACM Transactions on Algorithms, 4(1), 2008.
37. R. Rubinfeld, G. Tamir, S. Vardi, and N. Xie. Fast local computation algorithms. In Proceedings of The Second Symposium on Innovations in Computer Science (ICS), pages 223-238, 2011.
38. M. E. Saks and C. Seshadhri. Local monotonicity reconstruction. SIAM Journal on Computing, 39(7):2897-2926, 2010.
39. T. Sarlos, A. Benczur, K. Csalogany, D. Fogaras, and B. Racz. To randomize or not to randomize: Space optimal summaries for hyperlink analysis. In Proceedings of the 15th International Conference on WorldWide Web, pages 297-306, 2006.
40. D. Spielman and S. Teng. Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In Proceedings of the Thirty-Sixth Annual ACM Symposium on the Theory of Computing, pages 81-90, 2004.
41. Y. Yoshida, M. Yamamoto, and H. Ito. An improved constant-time approximation algorithm for maximum matchings. In Proceedings of the Forty-First Annual ACM Symposium on the Theory of Computing, pages 225-234, 2009.
42. Z. A. Zhu, S. Lattanzi, and V. Mirrokni. A local algorithm for finding well-connected clusters. In Proceedings of the Thirtieth International Conference on Machine Learning, 2013.
X

Feedback for Dagstuhl Publishing