Document Open Access Logo

Improved Bounds in Stochastic Matching and Optimization

Authors Alok Baveja, Amit Chavan, Andrei Nikiforov, Aravind Srinivasan, Pan Xu



PDF
Thumbnail PDF

File

LIPIcs.APPROX-RANDOM.2015.124.pdf
  • Filesize: 483 kB
  • 11 pages

Document Identifiers

Author Details

Alok Baveja
Amit Chavan
Andrei Nikiforov
Aravind Srinivasan
Pan Xu

Cite AsGet BibTex

Alok Baveja, Amit Chavan, Andrei Nikiforov, Aravind Srinivasan, and Pan Xu. Improved Bounds in Stochastic Matching and Optimization. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 40, pp. 124-134, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015)
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.124

Abstract

We consider two fundamental problems in stochastic optimization: approximation algorithms for stochastic matching, and sampling bounds in the black-box model. For the former, we improve the current-best bound of 3.709 due to Adamczyk et al. (2015), to 3.224; we also present improvements on Bansal et al. (2012) for hypergraph matching and for relaxed versions of the problem. In the context of stochastic optimization, we improve upon the sampling bounds of Charikar et al. (2005).
Keywords
  • stochastic matching
  • approximation algorithms
  • sampling complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail