Document

# The Minimum Bisection in the Planted Bisection Model

## File

LIPIcs.APPROX-RANDOM.2015.710.pdf
• Filesize: 0.49 MB
• 16 pages

## Cite As

Amin Coja-Oghlan, Oliver Cooley, Mihyun Kang, and Kathrin Skubch. The Minimum Bisection in the Planted Bisection Model. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 40, pp. 710-725, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.710

## Abstract

In the planted bisection model a random graph G(n,p_+,p_-) with n vertices is created by partitioning the vertices randomly into two classes of equal size (up to plus or minus 1). Any two vertices that belong to the same class are linked by an edge with probability p_+ and any two that belong to different classes with probability (p_-) <(p_+) independently. The planted bisection model has been used extensively to benchmark graph partitioning algorithms. If (p_+)=2(d_+)/n and (p_-)=2(d_-)/n for numbers 0 <= (d_-) <(d_+) that remain fixed as n tends to infinity, then with high probability the "planted" bisection (the one used to construct the graph) will not be a minimum bisection. In this paper we derive an asymptotic formula for the minimum bisection width under the assumption that (d_+)-(d_-) > c * sqrt((d_+)ln(d_+)) for a certain constant c>0.
##### Keywords
• Random graphs
• minimum bisection
• planted bisection
• belief propagation.

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. E. Abbe, A. Bandeira, and G. Hall. Exact recovery in the stochastic block model. arXiv preprint arXiv:1405.3267, 2014.
2. D. Aldous and J. Steele. The objective method: probabilistic combinatorial optimization and local weak convergence. In Probability on discrete structures, pages 1-72. Springer, 2004.
3. S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings and graph partitioning. Journal of the ACM (JACM), 56:5, 2009.
4. V. Bapst, A. Coja-Oghlan, S. Hetterich, F. Rassmann, and D. Vilenchik. The condensation phase transition in random graph coloring. arXiv preprint arXiv:1404.5513, 2014.
5. B. Bollobás and A. Scott. Max cut for random graphs with a planted partition. Combinatorics, Probability and Computing, 13:451-474, 2004.
6. R. Boppana. Eigenvalues and graph bisection: An average-case analysis. In Proc. 28th Foundations of Computer Science, pages 280-285. IEEE, 1987.
7. T. Bui, S. Chaudhuri, T. Leighton, and M. Sipser. Graph bisection algorithms with good average case behavior. Combinatorica, 7:171-191, 1987.
8. T. Carson and R. Impagliazzo. Hill-climbing finds random planted bisections. In Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 903-909. Society for Industrial and Applied Mathematics, 2001.
9. A. Coja-Oghlan. A spectral heuristic for bisecting random graphs. In Random Structures and Algorithms, pages 351-398, 2006.
10. A. Coja-Oghlan, O. Cooley, M. Kang, and K. Skubch. How does the core sit inside the mantle? arXiv preprint arXiv:1503.09030, 2015.
11. A. Condon and R. Karp. Algorithms for graph partitioning on the planted partition model. Random Structures and Algorithms, 18:116-140, 2001.
12. A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová. Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications. Physical Review E, 84:066106, 2011.
13. A. Dembo, A. Montanari, and S. Sen. Extremal cuts of sparse random graphs. arXiv preprint arXiv:1503.03923, 2015.
14. T. Dimitriou and R. Impagliazzo. Go with the winners for graph bisection. In Proc. 9th SODA, pages 510-520. ACM/SIAM, 1998.
15. M. Dyer and A. Frieze. The solution of some random np-hard problems in polynomial expected time. Journal of Algorithms, 10:451-489, 1989.
16. U. Feige and J. Kilian. Heuristics for semirandom graph problems. Journal of Computer and System Sciences, 63:639-671, 2001.
17. U. Feige and R. Krauthgamer. A polylogarithmic approximation of the minimum bisection. SIAM Journal on Computing, 31:1090-1118, 2002.
18. M. Garey, D. Johnson, and L. Stockmeyer. Some simplified np-complete graph problems. Theoretical computer science, 1:237-267, 1976.
19. M. Goemans and D. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM (JACM), 42:1115-1145, 1995.
20. P. Holland, K. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps. Social networks, 5:109-137, 1983.
21. S. Janson, T. Łuczak, and A. Ruciński. Random graphs. John Wiley & Sons, 2000.
22. M. Jerrum and G. Sorkin. The metropolis algorithm for graph bisection. Discrete Applied Mathematics, 82:155-175, 1998.
23. A. Juels. Topics in black-box combinatorial function optimization. PhD thesis, UC Berkeley, 1996.
24. R. Karp. Reducibility among combinatorial problems. Springer, 1972.
25. M. Karpinski. Approximability of the minimum bisection problem: An algorithmic challenge. In Proc. 27th Mathematical Foundations of Computer Science, pages 59-67. Springer, 2002.
26. S. Khot. Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM Journal on Computing, 36:1025-1071, 2006.
27. L. Kučera. Expected complexity of graph partitioning problems. Discrete Applied Mathematics, 57:193-212, 1995.
28. M. Luczak and C. McDiarmid. Bisecting sparse random graphs. Random Structures and Algorithms, 18:31-38, 2001.
29. K. Makarychev, Y. Makarychev, and A. Vijayaraghavan. Approximation algorithms for semi-random partitioning problems. In Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pages 367-384. ACM, 2012.
30. L. Massoulié. Community detection thresholds and the weak ramanujan property. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pages 694-703. ACM, 2014.
31. F. McSherry. Spectral partitioning of random graphs. In Proc. 42nd Foundations of Computer Science, pages 529-537. IEEE, 2001.
32. M. Mézard and A. Montanari. Information, physics, and computation. Oxford University Press, 2009.
33. E. Mossel, J. Neeman, and A. Sly. Stochastic block models and reconstruction. arXiv preprint arXiv:1202.1499, 2012.
34. E. Mossel, J. Neeman, and A. Sly. Belief propagation, robust reconstruction, and optimal recovery of block models. arXiv preprint arXiv:1309.1380, 2013.
35. E. Mossel, J. Neeman, and A. Sly. A proof of the block model threshold conjecture. arXiv preprint arXiv:1311.4115, 2013.
36. E. Mossel, J. Neeman, and A. Sly. Consistency thresholds for the planted bisection model. arXiv preprint arXiv:1407.1591 v2, 2014.
37. R. Neininger and L. Rüschendorf. A general limit theorem for recursive algorithms and combinatorial structures. The Annals of Applied Probability, 14:378-418, 2004.
38. H. Räcke. Optimal hierarchical decompositions for congestion minimization in networks. In Proc. 40th ACM symposium on Theory of computing, pages 255-264. ACM, 2008.
39. M. Talagrand. The parisi formula. Annals of Mathematics, 163:221-263, 2006.