A probability distribution over {-1, 1}^n is (epsilon, k)-wise uniform if, roughly, it is epsilon-close to the uniform distribution when restricted to any k coordinates. We consider the problem of how far an (epsilon, k)-wise uniform distribution can be from any globally k-wise uniform distribution. We show that every (epsilon, k)-wise uniform distribution is O(n^{k/2}epsilon)-close to a k-wise uniform distribution in total variation distance. In addition, we show that this bound is optimal for all even k: we find an (epsilon, k)-wise uniform distribution that is Omega(n^{k/2}epsilon)-far from any k-wise uniform distribution in total variation distance. For k=1, we get a better upper bound of O(epsilon), which is also optimal. One application of our closeness result is to the sample complexity of testing whether a distribution is k-wise uniform or delta-far from k-wise uniform. We give an upper bound of O(n^{k}/delta^2) (or O(log n/delta^2) when k = 1) on the required samples. We show an improved upper bound of O~(n^{k/2}/delta^2) for the special case of testing fully uniform vs. delta-far from k-wise uniform. Finally, we complement this with a matching lower bound of Omega(n/delta^2) when k = 2. Our results improve upon the best known bounds from [Alon et al., 2007], and have simpler proofs.
@InProceedings{odonnell_et_al:LIPIcs.APPROX-RANDOM.2018.54, author = {O'Donnell, Ryan and Zhao, Yu}, title = {{On Closeness to k-Wise Uniformity}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)}, pages = {54:1--54:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-085-9}, ISSN = {1868-8969}, year = {2018}, volume = {116}, editor = {Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.54}, URN = {urn:nbn:de:0030-drops-94581}, doi = {10.4230/LIPIcs.APPROX-RANDOM.2018.54}, annote = {Keywords: k-wise independence, property testing, Fourier analysis, Boolean function} }
Feedback for Dagstuhl Publishing