Creative Commons Attribution 3.0 Unported license
We continue the study of pseudo-deterministic algorithms initiated by Gat and Goldwasser [Eran Gat and Shafi Goldwasser, 2011]. A pseudo-deterministic algorithm is a probabilistic algorithm which produces a fixed output with high probability. We explore pseudo-determinism in the settings of learning and approximation. Our goal is to simulate known randomized algorithms in these settings by pseudo-deterministic algorithms in a generic fashion - a goal we succinctly term pseudo-derandomization. Learning. In the setting of learning with membership queries, we first show that randomized learning algorithms can be derandomized (resp. pseudo-derandomized) under the standard hardness assumption that E (resp. BPE) requires large Boolean circuits. Thus, despite the fact that learning is an algorithmic task that requires interaction with an oracle, standard hardness assumptions suffice to (pseudo-)derandomize it. We also unconditionally pseudo-derandomize any {quasi-polynomial} time learning algorithm for polynomial size circuits on infinitely many input lengths in sub-exponential time.
Next, we establish a generic connection between learning and derandomization in the reverse direction, by showing that deterministic (resp. pseudo-deterministic) learning algorithms for a concept class C imply hitting sets against C that are computable deterministically (resp. pseudo-deterministically). In particular, this suggests a new approach to constructing hitting set generators against AC^0[p] circuits by giving a deterministic learning algorithm for AC^0[p]. Approximation. Turning to approximation, we unconditionally pseudo-derandomize any poly-time randomized approximation scheme for integer-valued functions infinitely often in subexponential time over any samplable distribution on inputs. As a corollary, we get that the (0,1)-Permanent has a fully pseudo-deterministic approximation scheme running in sub-exponential time infinitely often over any samplable distribution on inputs.
Finally, we {investigate} the notion of approximate canonization of Boolean circuits. We use a connection between pseudodeterministic learning and approximate canonization to show that if BPE does not have sub-exponential size circuits infinitely often, then there is a pseudo-deterministic approximate canonizer for AC^0[p] computable in quasi-polynomial time.
@InProceedings{carbonioliveira_et_al:LIPIcs.APPROX-RANDOM.2018.55,
author = {Carboni Oliveira, Igor and Santhanam, Rahul},
title = {{Pseudo-Derandomizing Learning and Approximation}},
booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
pages = {55:1--55:19},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-085-9},
ISSN = {1868-8969},
year = {2018},
volume = {116},
editor = {Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.55},
URN = {urn:nbn:de:0030-drops-94598},
doi = {10.4230/LIPIcs.APPROX-RANDOM.2018.55},
annote = {Keywords: derandomization, learning, approximation, boolean circuits}
}