Submodular Optimization with Contention Resolution Extensions

Authors Benjamin Moseley , Maxim Sviridenko



PDF
Thumbnail PDF

File

LIPIcs.APPROX-RANDOM.2019.3.pdf
  • Filesize: 0.57 MB
  • 17 pages

Document Identifiers

Author Details

Benjamin Moseley
  • Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA
  • Relational AI, Berkeley CA, USA
Maxim Sviridenko
  • Yahoo Research, New York, NY, USA

Cite AsGet BibTex

Benjamin Moseley and Maxim Sviridenko. Submodular Optimization with Contention Resolution Extensions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 3:1-3:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.3

Abstract

This paper considers optimizing a submodular function subject to a set of downward closed constraints. Previous literature on this problem has often constructed solutions by (1) discovering a fractional solution to the multi-linear extension and (2) rounding this solution to an integral solution via a contention resolution scheme. This line of research has improved results by either optimizing (1) or (2). Diverging from previous work, this paper introduces a principled method called contention resolution extensions of submodular functions. A contention resolution extension combines the contention resolution scheme into a continuous extension of a discrete submodular function. The contention resolution extension can be defined from effectively any contention resolution scheme. In the case where there is a loss in both (1) and (2), by optimizing them together, the losses can be combined resulting in an overall improvement. This paper showcases the concept by demonstrating that for the problem of optimizing a non-monotone submodular subject to the elements forming an independent set in an interval graph, the algorithm gives a .188-approximation. This improves upon the best known 1/(2e)~eq .1839 approximation.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Combinatorial algorithms
Keywords
  • Submodular
  • Optimization
  • Approximation Algorithm
  • Interval Scheduling

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Niv Buchbinder and Moran Feldman. Constrained Submodular Maximization via a Non-symmetric Technique. CoRR, abs/1611.03253, 2016. URL: http://arxiv.org/abs/1611.03253.
  2. Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a Submodular Set Function Subject to a Matroid Constraint (Extended Abstract). In IPCO, pages 182-196, 2007. Google Scholar
  3. Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a Monotone Submodular Function Subject to a Matroid Constraint. SIAM J. Comput., 40(6):1740-1766, 2011. Google Scholar
  4. Chandra Chekuri, T. S. Jayram, and Jan Vondrák. On Multiplicative Weight Updates for Concave and Submodular Function Maximization. In ITCS, pages 201-210, 2015. Google Scholar
  5. Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Dependent Randomized Rounding via Exchange Properties of Combinatorial Structures. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 575-584, 2010. Google Scholar
  6. Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular Function Maximization via the Multilinear Relaxation and Contention Resolution Schemes. SIAM J. Comput., 43(6):1831-1879, 2014. Google Scholar
  7. Alina Ene and Huy L Nguyen. Constrained Submodular Maximization: Beyond 1/e. In FOCS, 2016. Google Scholar
  8. Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. Maximizing Non-monotone Submodular Functions. SIAM J. Comput., 40(4):1133-1153, 2011. Google Scholar
  9. Moran Feldman. Maximization Problems with Submodular Objective Functions. PhD thesis, Technion - Israel Institute of Technology, 2013. Google Scholar
  10. Moran Feldman, Christopher Harshaw, and Amin Karbasi. Greed Is Good: Near-Optimal Submodular Maximization via Greedy Optimization. In Proceedings of the 30th Conference on Learning Theory, COLT 2017, Amsterdam, The Netherlands, 7-10 July 2017, pages 758-784, 2017. Google Scholar
  11. Moran Feldman, Joseph Naor, and Roy Schwartz. A Unified Continuous Greedy Algorithm for Submodular Maximization. In FOCS, pages 570-579, 2011. Google Scholar
  12. Ryan Gomes and Andreas Krause. Budgeted Nonparametric Learning from Data Streams. In ICML, pages 391-398, 2010. Google Scholar
  13. David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the Spread of Influence through a Social Network. Theory of Computing, 11:105-147, 2015. Google Scholar
  14. Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005. Google Scholar
  15. Matt J. Kusner, Wenlin Chen, Quan Zhou, Zhixiang Eddie Xu, Kilian Q. Weinberger, and Yixin Chen. Feature-Cost Sensitive Learning with Submodular Trees of Classifiers. In AAAI, pages 1939-1945, 2014. Google Scholar
  16. Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Maximizing Nonmonotone Submodular Functions under Matroid or Knapsack Constraints. SIAM J. Discrete Math., 23(4):2053-2078, 2010. Google Scholar
  17. Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular Maximization over Multiple Matroids via Generalized Exchange Properties. Math. Oper. Res., 35(4):795-806, 2010. Google Scholar
  18. Hui Lin and Jeff A. Bilmes. Multi-document Summarization via Budgeted Maximization of Submodular Functions. In Human Language Technologies: Conference of the North American Chapter of the Association of Computational Linguistics, Proceedings, June 2-4, 2010, Los Angeles, California, USA, pages 912-920, 2010. Google Scholar
  19. Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle model. In STOC, pages 67-74, 2008. Google Scholar
  20. Jan Vondrák. Symmetry and Approximability of Submodular Maximization Problems. SIAM J. Comput., 42(1):265-304, 2013. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail