Document

# On a Connectivity Threshold for Colorings of Random Graphs and Hypergraphs

## File

LIPIcs.APPROX-RANDOM.2019.36.pdf
• Filesize: 0.49 MB
• 10 pages

## Cite As

Michael Anastos and Alan Frieze. On a Connectivity Threshold for Colorings of Random Graphs and Hypergraphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 36:1-36:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.36

## Abstract

Let Omega_q=Omega_q(H) denote the set of proper [q]-colorings of the hypergraph H. Let Gamma_q be the graph with vertex set Omega_q where two vertices are adjacent iff the corresponding colorings differ in exactly one vertex. We show that if H=H_{n,m;k}, k >= 2, the random k-uniform hypergraph with V=[n] and m=dn/k hyperedges then w.h.p. Gamma_q is connected if d is sufficiently large and q >~ (d/log d)^{1/(k-1)}. This is optimal to the first order in d. Furthermore, with a few more colors, we find that the diameter of Gamma_q is O(n) w.h.p, where the hidden constant depends on d. So, with this choice of d,q, the natural Glauber Dynamics Markov Chain on Omega_q is ergodic w.h.p.

## Subject Classification

##### ACM Subject Classification
• Theory of computation
##### Keywords
• Random Graphs
• Colorings
• Ergodicity

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. D. Achlioptas, A. Coja-Oghlan, and F. Ricci-Tersenghi. On the solution-space geometry of random constraint satisfaction problems. Random Structures and Algorithms, 38:251-268, 2010.
2. P. Ayre, A. Coja-Oghlan, and C. Greenhill. Hypergraph coloring up to condensation. arxiv:1508.01841, 2019. URL: http://arxiv.org/abs/1508.01841.
3. P. Ayre and C. Greenhill. Rigid colourings of hypergraphs and contiguity. arxiv:1812.03195, 2019. URL: http://arxiv.org/abs/1812.03195.
4. V. Bapst, A. Coja-Oghlan, S. Hetterich, F. Rassmann, and D. Vilenchik. The condensation phase transition in random graph coloring. Communications in Mathematical Physics, 341:543-606, 2016.
5. N. Bousquet and G. Perarnau. Fast recoloring of sparse graphs. European Journal of Combinatorics, 52:1-11, 2016.
6. C. Efthymiou, T. Hayes, D. Štefankovič, and E. Vigoda. Sampling Colorings of Sparse random Graphs. In SODA, 2018.
7. C. Feghali. Paths between colourings of sparse graphs. European Journal of Combinatorics, 75:169-171, 2019.
8. A.M. Frieze and M. Karoński. Introduction to Random Graphs. Cambridge University Press, 2015.
9. M. Gabrié, V. Dani, G. Semerjian, and L. Zdeborová. Phase transitions in the q-coloring of random hypergraphs. Journal of Physics A: Mathematical Theory, 50, 2017.
10. A. Sly J. Ding and N. Sun. Proof of the satisfiability conjecture for large k. arxiv:1411.0650, 2019. URL: http://arxiv.org/abs/1411.0650.
11. F. Krzaka̧la, A. Montanari, F. Ricci-Tersenghi, G. Semerijian, and L. Zdeborová. Gibbs states and the set of solutions of random constraint satisfaction problems. Proceedings of the National Academy of Sciences, 104:10318-10323, 2007.
12. Anastos M., A.M. Frieze, and W. Pegden. Constraining the clustering transition for colorings of sparse random graphs. Electronic Journal of Combinatorics, 2018.
13. and A. Flaxman M. Dyer, A.M. Frieze, and E. Vigoda. Randomly coloring sparse random graphs with fewer colors than the maximum degree. Random Structures and Algorithms, 29:450-465, 2006.
14. M. Molloy. The freezing threshold for k-colourings of a random graph. In STOC, 2012.
15. E. Shamir and E. Upfal. Sequential and Distributed Graph Coloring Algorithms with Performance Analysis in Random Graph Spaces. Journal of Algorithms, 5:488-501, 1984.
16. L. Zdeborová and F. Krzaka̧la. Phase Transitions in the Coloring of Random Graphs. Physics Review E, 76, 2007.
X

Feedback for Dagstuhl Publishing