The epsilon-approximate degree deg~_epsilon(f) of a Boolean function f is the least degree of a real-valued polynomial that approximates f pointwise to within epsilon. A sound and complete certificate for approximate degree being at least k is a pair of probability distributions, also known as a dual polynomial, that are perfectly k-wise indistinguishable, but are distinguishable by f with advantage 1 - epsilon. Our contributions are: - We give a simple, explicit new construction of a dual polynomial for the AND function on n bits, certifying that its epsilon-approximate degree is Omega (sqrt{n log 1/epsilon}). This construction is the first to extend to the notion of weighted degree, and yields the first explicit certificate that the 1/3-approximate degree of any (possibly unbalanced) read-once DNF is Omega(sqrt{n}). It draws a novel connection between the approximate degree of AND and anti-concentration of the Binomial distribution. - We show that any pair of symmetric distributions on n-bit strings that are perfectly k-wise indistinguishable are also statistically K-wise indistinguishable with at most K^{3/2} * exp (-Omega (k^2/K)) error for all k < K <= n/64. This bound is essentially tight, and implies that any symmetric function f is a reconstruction function with constant advantage for a ramp secret sharing scheme that is secure against size-K coalitions with statistical error K^{3/2} * exp (-Omega (deg~_{1/3}(f)^2/K)) for all values of K up to n/64 simultaneously. Previous secret sharing schemes required that K be determined in advance, and only worked for f=AND. Our analysis draws another new connection between approximate degree and concentration phenomena. As a corollary of this result, we show that for any d <= n/64, any degree d polynomial approximating a symmetric function f to error 1/3 must have coefficients of l_1-norm at least K^{-3/2} * exp ({Omega (deg~_{1/3}(f)^2/d)}). We also show this bound is essentially tight for any d > deg~_{1/3}(f). These upper and lower bounds were also previously only known in the case f=AND.
@InProceedings{bogdanov_et_al:LIPIcs.APPROX-RANDOM.2019.71, author = {Bogdanov, Andrej and Mande, Nikhil S. and Thaler, Justin and Williamson, Christopher}, title = {{Approximate Degree, Secret Sharing, and Concentration Phenomena}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)}, pages = {71:1--71:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-125-2}, ISSN = {1868-8969}, year = {2019}, volume = {145}, editor = {Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.71}, URN = {urn:nbn:de:0030-drops-112869}, doi = {10.4230/LIPIcs.APPROX-RANDOM.2019.71}, annote = {Keywords: approximate degree, dual polynomial, pseudorandomness, polynomial approximation, secret sharing} }
Feedback for Dagstuhl Publishing