Stable Approximation Algorithms for Dominating Set and Independent Set

Authors Mark de Berg, Arpan Sadhukhan , Frits Spieksma



PDF
Thumbnail PDF

File

LIPIcs.APPROX-RANDOM.2023.27.pdf
  • Filesize: 0.86 MB
  • 19 pages

Document Identifiers

Author Details

Mark de Berg
  • Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
Arpan Sadhukhan
  • Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
Frits Spieksma
  • Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Cite AsGet BibTex

Mark de Berg, Arpan Sadhukhan, and Frits Spieksma. Stable Approximation Algorithms for Dominating Set and Independent Set. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 27:1-27:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.27

Abstract

We study Dominating Set and Independent Set for dynamic graphs in the vertex-arrival model. We say that a dynamic algorithm for one of these problems is k-stable when it makes at most k changes to its output independent set or dominating set upon the arrival of each vertex. We study trade-offs between the stability parameter k of the algorithm and the approximation ratio it achieves. We obtain the following results. - We show that there is a constant ε^* > 0 such that any dynamic (1+ε^*)-approximation algorithm for Dominating Set has stability parameter Ω(n), even for bipartite graphs of maximum degree 4. - We present algorithms with very small stability parameters for Dominating Set in the setting where the arrival degree of each vertex is upper bounded by d. In particular, we give a 1-stable (d+1)²-approximation, and a 3-stable (9d/2)-approximation algorithm. - We show that there is a constant ε^* > 0 such that any dynamic (1+ε^*)-approximation algorithm for Independent Set has stability parameter Ω(n), even for bipartite graphs of maximum degree 3. - Finally, we present a 2-stable O(d)-approximation algorithm for Independent Set, in the setting where the average degree of the graph is upper bounded by some constant d at all times.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
  • Mathematics of computing → Graph algorithms
Keywords
  • Dynamic algorithms
  • approximation algorithms
  • stability
  • dominating set
  • independent set

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Spyros Angelopoulos, Christoph Dürr, and Shendan Jin. Online maximum matching with recourse. In Proc. 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS), volume 117 of LIPIcs, pages 8:1-8:15, 2018. URL: https://doi.org/10.4230/LIPIcs.MFCS.2018.8.
  2. Daniel Antunes, Claire Mathieu, and Nabil H. Mustafa. Combinatorics of local search: An optimal 4-local Hall’s theorem for planar graphs. In Proc. 25th Annual European Symposium on Algorithms (ESA), volume 87 of LIPIcs, pages 8:1-8:13, 2017. URL: https://doi.org/10.4230/LIPIcs.ESA.2017.8.
  3. Sebastian Berndt, Valentin Dreismann, Kilian Grage, Klaus Jansen, and Ingmar Knof. Robust online algorithms for certain dynamic packing problems. In Proc. 17th International Workshop on Approximation and Online Algorithms (WAOA), volume 11926 of Lecture Notes in Computer Science, pages 43-59, 2019. URL: https://doi.org/10.1007/978-3-030-39479-0_4.
  4. Sebastian Berndt, Leah Epstein, Klaus Jansen, Asaf Levin, Marten Maack, and Lars Rohwedder. Online bin covering with limited migration. In Proc. 27th Annual European Symposium on Algorithms (ESA), volume 144 of LIPIcs, pages 18:1-18:14, 2019. URL: https://doi.org/10.4230/LIPIcs.ESA.2019.18.
  5. Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge University Press, 1998. Google Scholar
  6. Joan Boyar, Stephan J. Eidenbenz, Lene M. Favrholdt, Michal Kotrbcík, and Kim S. Larsen. Online dominating set. Algorithmica, 81(5):1938-1964, 2019. URL: https://doi.org/10.1007/s00453-018-0519-1.
  7. Joan Boyar, Lene M. Favrholdt, Michal Kotrbcík, and Kim S. Larsen. Relaxing the irrevocability requirement for online graph algorithms. Algorithmica, 84(7):1916-1951, 2022. URL: https://doi.org/10.1007/s00453-022-00944-w.
  8. Miroslav Chlebík and Janka Chlebíková. Approximation hardness of dominating set problems in bounded degree graphs. Inf. Comput., 206(11):1264-1275, 2008. URL: https://doi.org/10.1016/j.ic.2008.07.003.
  9. Minati De, Sambhav Khurana, and Satyam Singh. Online dominating set and independent set. CoRR, abs/2111.07812, 2021. URL: https://arxiv.org/abs/2111.07812.
  10. Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C. van der Zanden. A framework for Exponential-Time-Hypothesis-tight algorithms and lower bounds in geometric intersection graphs. SIAM J. Comput., 49:1291-1331, 2020. URL: https://doi.org/10.1137/20M1320870.
  11. Mark de Berg, Sándor Kisfaludi-Bak, Morteza Monemizadeh, and Leonidas Theocharous. Clique-based separators for geometric intersection graphs. In Proc. 32nd International Symposium on Algorithms and Computation (ISAAC), volume 212 of LIPIcs, pages 22:1-22:15, 2021. URL: https://doi.org/10.4230/LIPIcs.ISAAC.2021.22.
  12. Mark de Berg, Arpan Sadhukhan, and Frits C. R. Spieksma. Stable approximation algorithms for the dynamic broadcast range-assignment problem. In Proc. 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), volume 227 of LIPIcs, pages 15:1-15:21, 2022. URL: https://doi.org/10.4230/LIPIcs.SWAT.2022.15.
  13. Oliver Göbel, Martin Hoefer, Thomas Kesselheim, Thomas Schleiden, and Berthold Vöcking. Online independent set beyond the worst-case: Secretaries, prophets, and periods. In Proc. 41st International Colloquium on Automata, Languages, and Programming (ICALP), volume 8573 of Lecture Notes in Computer Science, pages 508-519, 2014. URL: https://doi.org/10.1007/978-3-662-43951-7_43.
  14. Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Panigrahi. Online and dynamic algorithms for set cover. In Proc. 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 537-550, 2017. URL: https://doi.org/10.1145/3055399.3055493.
  15. Anupam Gupta, Amit Kumar, and Cliff Stein. Maintaining assignments online: Matching, scheduling, and flows. In Chandra Chekuri, editor, Proc. 2th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 468-479, 2014. URL: https://doi.org/10.1137/1.9781611973402.35.
  16. Magnús M. Halldórsson, Kazuo Iwama, Shuichi Miyazaki, and Shiro Taketomi. Online independent sets. Theor. Comput. Sci., 289(2):953-962, 2002. URL: https://doi.org/10.1016/S0304-3975(01)00411-X.
  17. Sariel Har-Peled and Kent Quanrud. Approximation algorithms for polynomial-expansion and low-density graphs. In Proc. 23rd Annual European Symposium on Algorithms (ESA), volume 9294 of Lecture Notes in Computer Science, pages 717-728. Springer, 2015. URL: https://doi.org/10.1007/978-3-662-48350-3_60.
  18. Gow-Hsing King and Wen-Guey Tzeng. On-line algorithms for the dominating set problem. Inf. Process. Lett., 61(1):11-14, 1997. URL: https://doi.org/10.1016/S0020-0190(96)00191-3.
  19. Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM J. Appl. Math, 36(2):177-189, 1977. URL: https://doi.org/doi/10.1137/0136016.
  20. Richard J. Lipton and Andrew Tomkins. Online interval scheduling. In Proc. 5th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 302-311, 1994. URL: http://dl.acm.org/citation.cfm?id=314464.314506.
  21. Hsiang-Hsuan Liu and Jonathan Toole-Charignon. The power of amortized recourse for online graph problems. CoRR, abs/2206.01077, 2022. URL: https://doi.org/10.48550/arXiv.2206.01077.
  22. David Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic number. In Proc. 38th Annual ACM Symposium on Theory of Computing (STOC), pages 681-690, 2006. URL: https://doi.org/10.1145/1132516.1132612.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail