Fairness considerations have motivated new clustering problems and algorithms in recent years. In this paper we consider the Priority Matroid Median problem which generalizes the Priority k-Median problem that has recently been studied. The input consists of a set of facilities ℱ and a set of clients 𝒞 that lie in a metric space (ℱ ∪ 𝒞,d), and a matroid ℳ = (ℱ,ℐ) over the facilities. In addition, each client j has a specified radius r_j ≥ 0 and each facility i ∈ ℱ has an opening cost f_i > 0. The goal is to choose a subset S ⊆ ℱ of facilities to minimize ∑_{i ∈ ℱ} f_i + ∑_{j ∈ 𝒞} d(j,S) subject to two constraints: (i) S is an independent set in ℳ (that is S ∈ ℐ) and (ii) for each client j, its distance to an open facility is at most r_j (that is, d(j,S) ≤ r_j). For this problem we describe the first bicriteria (c₁,c₂) approximations for fixed constants c₁,c₂: the radius constraints of the clients are violated by at most a factor of c₁ and the objective cost is at most c₂ times the optimum cost. We also improve the previously known bicriteria approximation for the uniform radius setting (r_j : = L ∀ j ∈ 𝒞).
@InProceedings{bajpai_et_al:LIPIcs.APPROX/RANDOM.2023.7, author = {Bajpai, Tanvi and Chekuri, Chandra}, title = {{Bicriteria Approximation Algorithms for Priority Matroid Median}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)}, pages = {7:1--7:22}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-296-9}, ISSN = {1868-8969}, year = {2023}, volume = {275}, editor = {Megow, Nicole and Smith, Adam}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.7}, URN = {urn:nbn:de:0030-drops-188328}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2023.7}, annote = {Keywords: k-median, fair clustering, matroid} }
Feedback for Dagstuhl Publishing