We investigate the genus g(n,m) of the Erdös-Rényi random graph G(n,m), providing a thorough description of how this relates to the function m=m(n), and finding that there is different behaviour depending on which `region' m falls into. Existing results are known for when m is at most n/(2) + O(n^{2/3}) and when m is at least omega (n^{1+1/(j)}) for j in N, and so we focus on intermediate cases. In particular, we show that g(n,m) = (1+o(1)) m/(2) whp (with high probability) when n << m = n^{1+o(1)}; that g(n,m) = (1+o(1)) mu (lambda) m whp for a given function mu (lambda) when m ~ lambda n for lambda > 1/2; and that g(n,m) = (1+o(1)) (8s^3)/(3n^2) whp when m = n/(2) + s for n^(2/3) << s << n. We then also show that the genus of fixed graphs can increase dramatically if a small number of random edges are added. Given any connected graph with bounded maximum degree, we find that the addition of epsilon n edges will whp result in a graph with genus Omega (n), even when epsilon is an arbitrarily small constant! We thus call this the `fragile genus' property.
@InProceedings{dowden_et_al:LIPIcs.AofA.2018.17, author = {Dowden, Chris and Kang, Mihyun and Krivelevich, Michael}, title = {{The Genus of the Erd\"{o}s-R\'{e}nyi Random Graph and the Fragile Genus Property}}, booktitle = {29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)}, pages = {17:1--17:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-078-1}, ISSN = {1868-8969}, year = {2018}, volume = {110}, editor = {Fill, James Allen and Ward, Mark Daniel}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2018.17}, URN = {urn:nbn:de:0030-drops-89100}, doi = {10.4230/LIPIcs.AofA.2018.17}, annote = {Keywords: Random graphs, Genus, Fragile genus} }
Feedback for Dagstuhl Publishing