Document

# The First Bijective Proof of the Alternating Sign Matrix Theorem Theorem

## File

LIPIcs.AofA.2020.12.pdf
• Filesize: 0.55 MB
• 12 pages

## Cite As

Ilse Fischer and Matjaž Konvalinka. The First Bijective Proof of the Alternating Sign Matrix Theorem Theorem. In 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 159, pp. 12:1-12:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
https://doi.org/10.4230/LIPIcs.AofA.2020.12

## Abstract

Alternating sign matrices are known to be equinumerous with descending plane partitions, totally symmetric self-complementary plane partitions and alternating sign triangles, but a bijective proof for any of these equivalences has been elusive for almost 40 years. In this extended abstract, we provide a sketch of the first bijective proof of the enumeration formula for alternating sign matrices, and of the fact that alternating sign matrices are equinumerous with descending plane partitions. The bijections are based on the operator formula for the number of monotone triangles due to the first author. The starting point for these constructions were known "computational" proofs, but the combinatorial point of view led to several drastic modifications and simplifications. We also provide computer code where all of our constructions have been implemented.

## Subject Classification

##### ACM Subject Classification
• Mathematics of computing → Combinatoric problems
• Mathematics of computing → Combinatorial algorithms
• Mathematics of computing → Enumeration
##### Keywords
• enumeration
• bijective proof
• alternating sign matrix
• plane partition

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. G. Andrews. Plane partitions. III. The weak Macdonald conjecture. Invent. Math., 53(3):193-225, 1979. URL: https://doi.org/10.1007/BF01389763.
2. G. Andrews. Plane partitions. V. The TSSCPP conjecture. J. Combin. Theory Ser. A, 66(1):28-39, 1994. URL: https://doi.org/10.1016/0097-3165(94)90048-5.
3. A. Ayyer, R. Behrend, and I. Fischer. Extreme diagonally and antidiagonally symmetric alternating sign matrices of odd order, 2016. preprint.
4. A. Bauer. What is an explicit bijection? FPSAC 2019 invited lecture, available at URL: http://videolectures.net/FPSAC2019_bauer_explicit_bijection/.
5. R. Behrend, P. Di Francesco, and P. Zinn-Justin. A doubly-refined enumeration of alternating sign matrices and descending plane partitions. J. Combin. Theory Ser. A, 120(2):409-432, 2013. URL: https://doi.org/10.1016/j.jcta.2012.09.004.
6. R. Behrend, I. Fischer, and M. Konvalinka. Diagonally and antidiagonally symmetric alternating sign matrices of odd order. Adv. Math., 315:324-365, 2017. URL: https://doi.org/10.1016/j.aim.2017.05.014.
7. P. Biane and H. Cheballah. Gog and GOGAm pentagons. J. Combin. Theory Ser. A, 138:133-154, 2016. URL: https://doi.org/10.1016/j.jcta.2015.10.001.
8. D. Bressoud. Proofs and confirmations. The story of the alternating sign matrix conjecture. MAA Spectrum. Mathematical Association of America and Cambridge University Press, Washington, DC and Cambridge, 1999.
9. D. Bressoud and J. Propp. How the alternating sign matrix conjecture was solved. Notices Amer. Math. Soc., 46(6):637-646, 1999.
10. I. Fischer. A method for proving polynomial enumeration formulas. J. Combin. Theory Ser. A, 111:37-58, 2005.
11. I. Fischer. The number of monotone triangles with prescribed bottom row. Adv. in Appl. Math., 37(2):249-267, 2006. URL: https://doi.org/10.1016/j.aam.2005.03.009.
12. I. Fischer. A new proof of the refined alternating sign matrix theorem. J. Combin. Theory Ser. A, 114(2):253-264, 2007. URL: https://doi.org/10.1016/j.jcta.2006.04.004.
13. I. Fischer. Short proof of the ASM theorem avoiding the six-vertex model. J. Combin. Theory Ser. A, 144:139-156, 2016.
14. I. Fischer and M. Konvalinka. A bijective proof of the ASM theorem, part I: the operator formula. preprint (2019). URL: http://arxiv.org/abs/1910.04198.
15. I. Fischer and M. Konvalinka. A bijective proof of the ASM theorem, part II: ASM enumeration and ASM-DPP relation. preprint (2019).
16. T. Fonseca and P. Zinn-Justin. On the doubly refined enumeration of alternating sign matrices and totally symmetric self-complementary plane partitions. Electron. J. Combin., 15:Research Paper 81, 35 pp. (electronic), 2008.
17. C. Krattenthaler. A gog-magog conjecture, 1996. URL: http://www.mat.univie.ac.at/~kratt/artikel/magog.html.
18. C. Krattenthaler. Plane partitions in the work of Richard Stanley and his school. In The mathematical legacy of Richard P. Stanley, pages 231-261. Amer. Math. Soc., Providence, RI, 2016.
19. G. Kuperberg. Another proof of the alternating-sign matrix conjecture. Internat. Math. Res. Notices, 1996(3):139-150, 1996. URL: https://doi.org/10.1155/S1073792896000128.
20. W. Mills, D. Robbins, and H. Rumsey, Jr. Alternating sign matrices and descending plane partitions. J. Combin. Theory Ser. A, 34(3):340-359, 1983. URL: https://doi.org/10.1016/0097-3165(83)90068-7.
21. W. Mills, D. Robbins, and H. Rumsey, Jr. Self-complementary totally symmetric plane partitions. J. Combin. Theory Ser. A, 42(2):277-292, 1986. URL: https://doi.org/10.1016/0097-3165(86)90098-1.
22. D. Robbins and H. Rumsey. Determinants and alternating sign matrices. Adv. in Math., 62(2):169-184, 1986. URL: https://doi.org/10.1016/0001-8708(86)90099-X.
23. V. Voevodsky. C-systems defined by universe categories: presheaves. arXiv = 1706.03620.
24. D. Zeilberger. Proof of the alternating sign matrix conjecture. Electron. J. Combin., 3(2):Research Paper 13, 84 pp. (electronic), 1996. The Foata Festschrift. URL: http://www.combinatorics.org/Volume_3/Abstracts/v3i2r13.html.
25. D. Zeilberger. Proof of the refined alternating sign matrix conjecture. New York J. Math., 2:59-68 (electronic), 1996. URL: http://nyjm.albany.edu:8000/j/1996/2_59.html.
X

Feedback for Dagstuhl Publishing