UML Interactions Meet State Machines - An Institutional Approach

Authors Alexander Knapp, Till Mossakowski

Thumbnail PDF


  • Filesize: 0.64 MB
  • 15 pages

Document Identifiers

Author Details

Alexander Knapp
Till Mossakowski

Cite AsGet BibTex

Alexander Knapp and Till Mossakowski. UML Interactions Meet State Machines - An Institutional Approach. In 7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 72, pp. 15:1-15:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


UML allows the multi-viewpoint modelling of systems. One important question is whether an interaction as specified by a sequence diagram can be actually realised in the system. Here, the latter is specified as a combination of several state machines (one for each lifeline in the interaction) by a composite structure diagram. In order to tackle this question, we formalise the involved UML diagram types as institutions, and their relations as institution (co)morphisms.
  • UML
  • state machines
  • interactions
  • composite structure diagrams
  • institutions
  • multi-view consistency


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Umesh Bellur and V. Vallieswaran. On OO Design Consistency in Iterative Development. In Proc. 3superscriptrd Intl. Conf. Information Technology: New Generations (ITNG'06), pages 46-51. IEEE, 2006. Google Scholar
  2. Mihai Codescu, Till Mossakowski, Don Sannella, and Andrzej Tarlecki. Specification Refinements: Calculi, Tools, and Applications. Sci. Comp. Prog., 2017. To appear. Google Scholar
  3. Gregor Engels, Reiko Heckel, and Jochen Malte Küster. The Consistency Workbench: A Tool for Consistency Management in UML-Based Development. In Perdita Stevens, Jon Whittle, and Grady Booch, editors, Proc. 6superscriptth Intl. Conf. Unified Modeling Language (UML'03), volume 2863 of Lect Notes Comp. Sci. Springer, 2003. Google Scholar
  4. José Luiz Fiadeiro. Categories for Software Engineering. Springer, 2005. Google Scholar
  5. Martin Glauer. Institution for Hierarchical UML State Machines. Master thesis, Otto-von-Guericke-Universität Magdeburg, 2015. Google Scholar
  6. Joseph A. Goguen and Rod M. Burstall. Institutions: Abstract Model Theory for Specification and Programming. J. ACM, 39:95-146, 1992. Google Scholar
  7. Joseph A. Goguen and Grigore Roşu. Institution Morphisms. Formal Asp. Comp., 13:274-307, 2002. Google Scholar
  8. Rolf Hennicker, Michel Bidoit, and Thanh-Son Dang. On Synchronous and Asynchronous Compatibility of Communicating Components. In Alberto Lluch-Lafuente and José Proença, editors, Proc. 18superscriptth IFIP WG 6.1 Intl. Conf. Coordination Models and Languages (COORDINATION'16), volume 9686 of Lect. Notes Comp. Sci., pages 138-156. Springer, 2016. Google Scholar
  9. Alexander Knapp and Till Mossakowski. Multi-view Consistency in UML, 2016. URL:
  10. Alexander Knapp, Till Mossakowski, and Markus Roggenbach. An Institutional Framework for Heterogeneous Formal Development in UML. A Position Paper. In Rocco De Nicola and Rolf Hennicker, editors, Software, Services, and Systems. Essays Dedicated to Martin Wirsing on the Occasion of His Retirement from the Chair of Programming and Software Engineering, volume 8950 of Lect. Notes Comp. Sci., pages 215-230. Springer, 2015. Google Scholar
  11. Alexander Knapp, Till Mossakowski, Markus Roggenbach, and Martin Glauer. An Institution for Simple UML State Machines. In Alexander Egyed and Ina Schaefer, editors, Proc. 18superscriptth Intl. Conf. Fundamental Approaches to Software Engineering (FASE'15), volume 9033 of Lect. Notes Comp. Sci., pages 3-18. Springer, 2015. Google Scholar
  12. Alexander Knapp and Jochen Wuttke. Model Checking of UML 2.0 Interactions. In Thomas Kühne, editor, Reports Rev. Sel. Papers Ws.s Symp.s MoDELS 2006, volume 4364 of Lect. Notes Comp. Sci., pages 42-51. Springer, 2007. Google Scholar
  13. Kevin Lano, editor. UML 2 - Semantics and Applications. Wiley, 2009. Google Scholar
  14. Till Mossakowski, Mihai Codescu, Fabian Neuhaus, and Oliver Kutz. The Distributed Ontology, Modelling and Specification Language - DOL. In Arnold Koslow and Arthur Buchsbaum, editors, The Road to Universal Logic - Festschrift for the 50th Birthday of Jean-Yves Beziau, vol. II, Studies in Universal Logic. Birkhäuser, 2015. Google Scholar
  15. Till Mossakowski, Christian Maeder, and Klaus Lüttich. The Heterogeneous Tool Set. In Orna Grumberg and Michael Huth, editors, Proc. 13superscriptth Intl. Conf. Tools and Algorithms for the Construction and Analysis of Systems (TACAS'07), volume 4424 of Lect. Notes Comp. Sci., pages 519-522. Springer, 2007. Google Scholar
  16. Iulian Ober and Iulia Dragomir. Unambiguous UML Composite Structures: The OMEGA2 Experience. In Ivana Cerná, Tibor Gyimóthy, Juraj Hromkovic, Keith G. Jeffery, Rastislav Královic, Marko Vukolic, and Stefan Wolf, editors, Proc. 37superscriptth Conf. Current Trends in Theory and Practice of Computer Science (SOFSEM'11), volume 6543 of Lect. Notes Comp. Sci., pages 418-430. Springer, 2011. Google Scholar
  17. Object Management Group. Unified Modeling Language 2.5. Standard formal/2015-03-01, OMG, 2015. URL:
  18. Object Management Group. Distributed Ontology, Modeling, and Specification Language (DOL) 1.0 - Beta. Standard ptc/2016-02-37, OMG, 2016. URL:
  19. Holger Rasch and Heike Wehrheim. Checking Consistency in UML Diagrams: Classes and State Machines. In Elie Najm, Uwe Nestmann, and Perdita Stevens, editors, Proc. 6superscriptth IFIP WG 6.1 Intl. Conf. Formal Methods for Open Object-Based Distributed Systems (FMOODS'03), volume 2884 of Lect. Notes Comp. Sci., pages 229-243. Springer, 2003. Google Scholar
  20. Tobias Rosenberger. Relating UML State Machines and Interactions in an Institutional Framework. Master thesis, Universität Augsburg, 2017. Google Scholar
  21. Lutz Schröder, Till Mossakowski, and Christoph Lüth. Type Class Polymorphism in an Institutional Framework. In José Luiz Fiadeiro, editor, Rev. Sel. Papers 17superscriptth Intl. Ws. Recent Trends in Algebraic Development Techniques (WADT'04), volume 3423 of Lect. Notes Comp. Sci., pages 234-248. Springer, 2005. Google Scholar