Upper Bounds on Quantum Query Complexity Inspired by the Elitzur-Vaidman Bomb Tester

Authors Cedric Yen-Yu Lin, Han-Hsuan Lin



PDF
Thumbnail PDF

File

LIPIcs.CCC.2015.537.pdf
  • Filesize: 0.57 MB
  • 30 pages

Document Identifiers

Author Details

Cedric Yen-Yu Lin
Han-Hsuan Lin

Cite AsGet BibTex

Cedric Yen-Yu Lin and Han-Hsuan Lin. Upper Bounds on Quantum Query Complexity Inspired by the Elitzur-Vaidman Bomb Tester. In 30th Conference on Computational Complexity (CCC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 33, pp. 537-566, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)
https://doi.org/10.4230/LIPIcs.CCC.2015.537

Abstract

Inspired by the Elitzur-Vaidman bomb testing problem [Elitzur/Vaidman 1993], we introduce a new query complexity model, which we call bomb query complexity B(f). We investigate its relationship with the usual quantum query complexity Q(f), and show that B(f)=Theta(Q(f)^2). This result gives a new method to upper bound the quantum query complexity: we give a method of finding bomb query algorithms from classical algorithms, which then provide nonconstructive upper bounds on Q(f)=Theta(sqrt(B(f))). We subsequently were able to give explicit quantum algorithms matching our upper bound method. We apply this method on the single-source shortest paths problem on unweighted graphs, obtaining an algorithm with O(n^(1.5)) quantum query complexity, improving the best known algorithm of O(n^(1.5) * sqrt(log(n))) [Furrow, 2008]. Applying this method to the maximum bipartite matching problem gives an O(n^(1.75)) algorithm, improving the best known trivial O(n^2) upper bound.
Keywords
  • Quantum Algorithms
  • Query Complexity
  • Elitzur-Vaidman Bomb Tester
  • Adversary Method
  • Maximum Bipartite Matching

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Scott Aaronson. Personal communication, 2014. Google Scholar
  2. Andris Ambainis. Quantum lower bounds by quantum arguments. In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing (STOC), pages 636-643, 2000. Google Scholar
  3. Andris Ambainis. Quantum walk algorithm for element distinctness. SIAM Journal on Computing, 37(1):210-239, 2007. Google Scholar
  4. Andris Ambainis and Robert Špalek. Quantum algorithms for matching and network flows. In Lecture Notes in Computer Science, volume 3884, pages 172-183. Springer, 2006. Google Scholar
  5. Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum lower bounds by polynomials. In Proceedings of the 39th Annual Symposium on Foundations of Computer Science (FOCS), page 352, 1998. Google Scholar
  6. Aleksandrs Belovs. Span programs for functions with constant-sized 1-certificates. In Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC), pages 77-84, 2012. Google Scholar
  7. Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths and weaknesses of quantum computing. SIAM Journal on Computing, 26(5):1510-1523, 1997. Google Scholar
  8. Claude Berge. Two theorems in graph theory. Proceedings of the National Academy of Sciences of the United States of America, 43(9):842-844, 1957. Google Scholar
  9. Aija Berzina, Andrej Dubrovsky, Rusins Freivalds, Lelde Lace, and Oksana Scegulnaja. Quantum query complexity for some graph problems. In Lecture Notes in Computer Science, volume 2932, pages 140-150. Springer, 2004. Google Scholar
  10. Rajendra Bhatia. Matrix Analysis. Springer-Verlag, 1997. Google Scholar
  11. Aharon Brodutch, Daniel Nagaj, Or Sattath, and Dominique Unruh. An adaptive attack on Wiesner’s quantum money. arXiv preprint arXiv:1404.1507 [quant-ph], 2014. Google Scholar
  12. Harry Buhrman and Ronald De Wolf. Complexity measures and decision tree complexity: A survey. Theoretical Computer Science, 288:2002, 1999. Google Scholar
  13. Andrew Childs. http://www.math.uwaterloo.ca/~amchilds/teaching/w13/l15.pdf, 2013.
  14. Stephen Cook, Cynthia Dwork, and Rüdiger Reischuk. Upper and lower time bounds for parallel random access machines without simultaneous writes. SIAM Journal on Computing, 15(1):87-97, 1986. Google Scholar
  15. E. A. Dinic. Algorithm for solution of a problem of maximum flow in a network with power estimation. Soviet Math Doklady, 11:1277-1280, 1970. Google Scholar
  16. Sebastian Dörn. Quantum algorithms for matching problems. Theory of Computing Systems, 45(3):613-628, October 2009. Google Scholar
  17. Christoph Dürr, Mark Heiligman, Peter Høyer, and Mehdi Mhalla. Quantum query complexity of some graph problems. arXiv:quant-ph/0401091, 2004. Google Scholar
  18. Christoph Dürr and Peter Høyer. A quantum algorithm for finding the minimum. arXiv preprint arXiv:quant-ph/9607014, 1996. Google Scholar
  19. Avshalom C. Elitzur and Lev Vaidman. Quantum mechanical interaction-free measurements. Foundations of Physics, 23(7):987-997, July 1993. Google Scholar
  20. Shimon Even and R. Endre Tarjan. Network flow and testing graph connectivity. SIAM Journal on Computing, 4(4):507-518, 1975. Google Scholar
  21. Bartholomew Furrow. A panoply of quantum algorithms. Quantum Information and Computation, 8(8):834-859, September 2008. Google Scholar
  22. Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC), May 1996. Google Scholar
  23. John E. Hopcroft and Richard M. Karp. An n^5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing, 2(4):225-231, 1973. Google Scholar
  24. Onur Hosten and Paul G. Kwiat. Weak measurements and counterfactual computation. arXiv preprint arXiv:quant-ph/0612159, 2006. Google Scholar
  25. Onur Hosten, Matthew T. Rakher, Julio T. Barreiro, Nicholas A. Peters, and Paul Kwiat. Counterfactual computation revisited. arXiv preprint arXiv:quant-ph/0607101, 2006. Google Scholar
  26. Onur Hosten, Matthew T. Rakher, Julio T. Barreiro, Nicholas A. Peters, and Paul G. Kwiat. Counterfactual quantum computation through quantum interrogation. Nature, 439:949-952, February 2006. Google Scholar
  27. Peter Høyer, Troy Lee, and Robert Špalek. Negative weights make adversaries stronger. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC), pages 526-535, 2007. Google Scholar
  28. Stacey Jeffery, Robin Kothari, and Frederic Magniez. Nested quantum walks with quantum data structures. In Proceedings of the 24th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1474-1485, 2012. Google Scholar
  29. Alexander V. Karzanov. O nakhozhdenii maksimal'nogo potoka v setyakh spetsial'nogo vida i nekotorykh prilozheniyakh. In L.A. Lyusternik, editor, Matematicheskie Voprosy Upravleniya Proizvodstvom, volume 5, pages 81-94. Moscow State University Press, 1973. Google Scholar
  30. Shelby Kimmel. Quantum adversary (upper) bound. Chicago Journal of Theoretical Computer Science, 2013(4), 2013. Google Scholar
  31. Robin Kothari. An optimal quantum algorithm for the oracle identification problem. In Ernst W. Mayr and Natacha Portier, editors, Proceedings of the 31st International Symposium on Theoretical Aspects of Computer Science (STACS), volume 25 of Leibniz International Proceedings in Informatics (LIPIcs), pages 482-493, Dagstuhl, Germany, 2014. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. Google Scholar
  32. Paul Kwiat, Harald Weinfurter, Thomas Herzog, Anton Zeilinger, and Mark A. Kasevich. Interaction-free measurement. Physical Review Letters, 74(24):4763, 1995. Google Scholar
  33. Troy Lee, Rajat Mittal, Ben W. Reichardt, Robert Špalek, and Mario Szegedy. Quantum query complexity of state conversion. In Proceedings of the 52nd IEEE Symposium on Foundations of Computer Science (FOCS), pages 344-353, 2011. Google Scholar
  34. Frédéric Magniez, Ashwin Nayak, Jérémie Roland, and Miklos Santha. Search via quantum walk. SIAM Journal on Computing, 40(1):142-164, 2011. Google Scholar
  35. Silvio Micali and Vijay V. Vazirani. An O(√|V|⋅ |E|) algorithm for finding maximum matching in general graphs. In Proceedings of the 21st Annual Symposium on Foundations of Computer Science (FOCS), pages 17-27, 1980. Google Scholar
  36. B. Misra and E. C. G. Sudarshan. The Zeno’s paradox in quantum theory. Journal of Mathematical Physics, 18(4):756, 1977. Google Scholar
  37. Graeme Mitchison and Richard Jozsa. Counterfactual computation. Proceedings of the Royal Society A, 457(2009):1175-1194, 2001. Google Scholar
  38. Graeme Mitchison and Richard Jozsa. The limits of counterfactual computation. arXiv preprint arXiv:quant-ph/0606092, 2006. Google Scholar
  39. Noam Nisan. CREW PRAMs and decision trees. SIAM Journal on Computing, 20(6):999-1007, 1991. Google Scholar
  40. Tae-Gon Noh. Counterfactual quantum cryptography. Physical Review Letters, 103:230501, 2009. Google Scholar
  41. Oded Regev and Liron Schiff. Impossibility of a quantum speed-up with a faulty oracle. In Lecture Notes in Computer Science, volume 5125, pages 773-781. Springer, 2008. Google Scholar
  42. Ben W. Reichardt. Span programs and quantum query complexity: The general adversary bound is nearly tight for every boolean function. In Proceedings of the 50th IEEE Symposium on Foundations of Computer Science (FOCS), pages 544-551, 2009. Google Scholar
  43. Ben W. Reichardt. Reflections for quantum query algorithms. In Proceedings of the 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 560-569, 2011. Google Scholar
  44. Hatim Salih, Zheng-Hong Li, M. Al-Amri, and M. Suhail Zubairy. Protocol for direct counterfactual quantum communication. Physical Review Letters, 110:170502, 2013. Google Scholar
  45. Mario Szegedy. Quantum speed-up of Markov chain based algorithms. In Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2004. Google Scholar
  46. Lev Vaidman. The impossibility of the counterfactual computation for all possible outcomes. arXiv preprint arXiv:quant-ph/0610174, 2006. Google Scholar
  47. Lev Vaidman. Comment on "protocol for direct counterfactual quantum communication" [arxiv:1206.2042]. arXiv preprint arXiv:1304.6689 [quant-ph], 2013. Google Scholar
  48. Stephen Wiesner. Conjugate coding. ACM SIGACT News, 15(1), 1983. Google Scholar
  49. Shengyu Zhang. On the power of Ambainis’s lower bounds. Theoretical Computer Science, 339(2-3):241-256, 2005. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail