We prove that the P^NP-type query complexity (alternatively, decision list width) of any boolean function f is quadratically related to the P^NP-type communication complexity of a lifted version of f. As an application, we show that a certain "product" lower bound method of Impagliazzo and Williams (CCC 2010) fails to capture P^NP communication complexity up to polynomial factors, which answers a question of Papakonstantinou, Scheder, and Song (CCC 2014).
@InProceedings{goos_et_al:LIPIcs.CCC.2017.12, author = {G\"{o}\"{o}s, Mika and Kamath, Pritish and Pitassi, Toniann and Watson, Thomas}, title = {{Query-to-Communication Lifting for P^NP}}, booktitle = {32nd Computational Complexity Conference (CCC 2017)}, pages = {12:1--12:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-040-8}, ISSN = {1868-8969}, year = {2017}, volume = {79}, editor = {O'Donnell, Ryan}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2017.12}, URN = {urn:nbn:de:0030-drops-75388}, doi = {10.4230/LIPIcs.CCC.2017.12}, annote = {Keywords: Communication Complexity, Query Complexity, Lifting Theorem, P^NP} }
Feedback for Dagstuhl Publishing