Hardness of Function Composition for Semantic Read once Branching Programs

Authors Jeff Edmonds , Venkatesh Medabalimi , Toniann Pitassi



PDF
Thumbnail PDF

File

LIPIcs.CCC.2018.15.pdf
  • Filesize: 0.56 MB
  • 22 pages

Document Identifiers

Author Details

Jeff Edmonds
  • York University, 4700 Keele Street, Toronto, CANADA
Venkatesh Medabalimi
  • University of Toronto, 10 King’s College Road, Toronto, CANADA
Toniann Pitassi
  • University of Toronto, 10 King’s College Road, Toronto, CANADA, and Institute for Advanced Study, Princeon NJ

Cite AsGet BibTex

Jeff Edmonds, Venkatesh Medabalimi, and Toniann Pitassi. Hardness of Function Composition for Semantic Read once Branching Programs. In 33rd Computational Complexity Conference (CCC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 102, pp. 15:1-15:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.CCC.2018.15

Abstract

In this work, we study time/space trade-offs for function composition. We prove asymptotically optimal lower bounds for function composition in the setting of nondeterministic read once branching programs, for the syntactic model as well as the stronger semantic model of read-once nondeterministic computation. We prove that such branching programs for solving the tree evaluation problem over an alphabet of size k requires size roughly k^{Omega(h)}, i.e space Omega(h log k). Our lower bound nearly matches the natural upper bound which follows the best strategy for black-white pebbling the underlying tree. While previous super-polynomial lower bounds have been proven for read-once nondeterministic branching programs (for both the syntactic as well as the semantic models), we give the first lower bounds for iterated function composition, and in these models our lower bounds are near optimal.

Subject Classification

ACM Subject Classification
  • Theory of computation → Complexity classes
Keywords
  • Branching Programs
  • Function Composition
  • Time-Space Tradeoffs
  • Semantic Read Once
  • Tree Evaluation Problem

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. M. Ajtai. A non-linear time lower bound for boolean branching programs. In Proceedings 40th FOCS, pages 60-70, 1999. Google Scholar
  2. P. Beame, T.S. Jayram, and M. Saks. Time-space tradeoffs for branching programs. J. Comput. Syst. Sci, 63(4):542-572, 2001. Google Scholar
  3. P. Beame, M. Saks, X. Sun, and E. Vee. Time-space trade-off lower bounds for randomized computation of decision problems. Journal of the ACM, 50(2):154-195, 2003. Google Scholar
  4. Paul Beame, Nathan Grosshans, Pierre McKenzie, and Luc Segoufin. Nondeterminism and an abstract formulation of nečiporuk’s lower bound method. ACM Transactions on Computation Theory, 9, 08 2016. Google Scholar
  5. Paul Beame and Pierre McKenzie. A note on neciporuk’s method for nondeterministic branching programs. Manuscript, August, 2011. Google Scholar
  6. Allan Borodin, A Razborov, and Roman Smolensky. On lower bounds for read-k-times branching programs. Computational Complexity, 3(1):1-18, 1993. Google Scholar
  7. Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymptotic theory of independence. Oxford university press, 2013. Google Scholar
  8. Siu On Chan, James R. Lee, Prasad Raghavendra, and David Steurer. Approximate constraint satisfaction requires large LP relaxations. J. ACM, 63(4):34:1-34:22, 2016. URL: http://dx.doi.org/10.1145/2811255.
  9. Stephen Cook, Pierre McKenzie, Dustin Wehr, Mark Braverman, and Rahul Santhanam. Pebbles and branching programs for tree evaluation. ACM Transactions on Computation Theory (TOCT), 3(2):4, 2012. Google Scholar
  10. Stephen Cook and Ravi Sethi. Storage requirements for deterministic polynomialtime recognizable languages. Journal of Computer and System Sciences, 13(1):25-37, 1976. Google Scholar
  11. Stephen A. Cook, Jeff Edmonds, Venkatesh Medabalimi, and Toniann Pitassi. Lower bounds for nondeterministic semantic read-once branching programs. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 36:1-36:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. URL: http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.36.
  12. Susanna F. de Rezende, Jakob Nordström, and Marc Vinyals. How limited interaction hinders real communication (and what it means for proof and circuit complexity). In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 295-304, 2016. Google Scholar
  13. Scott Diehl and Dieter Van Melkebeek. Time-space lower bounds for the polynomial-time hierarchy on randomized machines. SIAM Journal on Computing, 36(3):563-594, 2006. Google Scholar
  14. Irit Dinur and Or Meir. Toward the krw composition conjecture: Cubic formula lower bounds via communication complexity. In LIPIcs-Leibniz International Proceedings in Informatics, volume 50. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016. Google Scholar
  15. Jeff Edmonds, Russell Impagliazzo, Steven Rudich, and Jiri Sgall. Communication complexity towards lower bounds on circuit depth. Computational Complexity, 10(3):210-246, 2001. Google Scholar
  16. L. Fortnow. Nondeterministic polynomial time versus nondeterministic logarithmic space: Time space tradeoffs for satifiability. In Proceedings 12th Conference on Computational Complexity, pages 52-60, 1997. Google Scholar
  17. L. Fortnow and D. Van Melkebeek. Time-space tradeoffs for nondeterministic computation. In Proceedings 15th Conference on Computational Complexity, pages 2-13, 2000. Google Scholar
  18. Lance Fortnow, Richard Lipton, Dieter Van Melkebeek, and Anastasios Viglas. Time-space lower bounds for satisfiability. Journal of the ACM (JACM), 52(6):835-865, 2005. Google Scholar
  19. Dmitry Gavinsky, Or Meir, Omri Weinstein, and Avi Wigderson. Toward better formula lower bounds: an information complexity approach to the krw composition conjecture. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pages 213-222. ACM, 2014. Google Scholar
  20. Mika Göös. Lower bounds for clique vs. independent set. In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 1066-1076, 2015. Google Scholar
  21. S. Jukna. A nondeterministic space-time tradeoff for linear codes. Information Processing Letters, 109(5):286-289, 2009. Google Scholar
  22. Stasys Jukna. A note on read-k times branching programs. Informatique théorique et applications, 29(1):75-83, 1995. Google Scholar
  23. Stasys Jukna. Boolean function complexity: advances and frontiers, volume 27. Springer Science &Business Media, 2012. Google Scholar
  24. Stasys P Jukna. The effect of null-chains on the complexity of contact schemes. In Fundamentals of Computation Theory, pages 246-256. Springer, 1989. Google Scholar
  25. Mauricio Karchmer, Ran Raz, and Avi Wigderson. Super-logarithmic depth lower bounds via the direct sum in communication complexity. Computational Complexity, 5(3/4):191-204, 1995. URL: http://dx.doi.org/10.1007/BF01206317.
  26. Pravesh K. Kothari, Raghu Meka, and Prasad Raghavendra. Approximating rectangles by juntas and weakly-exponential lower bounds for LP relaxations of csps. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 590-603, 2017. Google Scholar
  27. Matthias Krause, Christoph Meinel, and Stephan Waack. Separating the eraser turing machine classes le, nle, co-nle and pe. In Mathematical Foundations of Computer Science 1988, pages 405-413. Springer, 1988. Google Scholar
  28. James R. Lee, Prasad Raghavendra, and David Steurer. Lower bounds on the size of semidefinite programming relaxations. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 567-576. ACM, 2015. URL: http://dx.doi.org/10.1145/2746539.2746599.
  29. R. Lipton and A. Viglas. Time-space tradeoffs for sat. In Proceedings 40th FOCS, pages 459-464, 1999. Google Scholar
  30. David Liu. Pebbling arguments for tree evaluation. CoRR, abs/1311.0293, 2013. URL: http://arxiv.org/abs/1311.0293.
  31. Edward I Nechiporuk. On a boolean function. Doklady Akademii Nauk SSSR, 169(4):765-+, 1966. Google Scholar
  32. EA Okolnishnikova. On lower bounds for branching programs. Siberian Advances in Mathematics, 3(1):152-166, 1993. Google Scholar
  33. Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combinatorica, 19(3):403-435, 1999. URL: http://dx.doi.org/10.1007/s004930050062.
  34. Johan Håstad. The shrinkage exponent of de morgan formulas is 2. SIAM Journal on Computing, 27(1):48-64, 1998. Google Scholar
  35. Avishay Tal. Shrinkage of de morgan formulae by spectral techniques. In Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on, pages 551-560. IEEE, 2014. Google Scholar
  36. Ryan Williams. Better time-space lower bounds for sat and related problems. In Computational Complexity, 2005. Proceedings. Twentieth Annual IEEE Conference on, pages 40-49. IEEE, 2005. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail