Earthmover Resilience and Testing in Ordered Structures

Authors Omri Ben-Eliezer, Eldar Fischer



PDF
Thumbnail PDF

File

LIPIcs.CCC.2018.18.pdf
  • Filesize: 0.62 MB
  • 35 pages

Document Identifiers

Author Details

Omri Ben-Eliezer
  • School of Computer Science, Tel Aviv University, Tel Aviv, Israel
Eldar Fischer
  • Faculty of Computer Science, Israel Institute of Technology (Technion), Haifa, Israel

Cite AsGet BibTex

Omri Ben-Eliezer and Eldar Fischer. Earthmover Resilience and Testing in Ordered Structures. In 33rd Computational Complexity Conference (CCC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 102, pp. 18:1-18:35, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.CCC.2018.18

Abstract

One of the main challenges in property testing is to characterize those properties that are testable with a constant number of queries. For unordered structures such as graphs and hypergraphs this task has been mostly settled. However, for ordered structures such as strings, images, and ordered graphs, the characterization problem seems very difficult in general. In this paper, we identify a wide class of properties of ordered structures - the earthmover resilient (ER) properties - and show that the "good behavior" of such properties allows us to obtain general testability results that are similar to (and more general than) those of unordered graphs. A property P is ER if, roughly speaking, slight changes in the order of the elements in an object satisfying P cannot make this object far from P. The class of ER properties includes, e.g., all unordered graph properties, many natural visual properties of images, such as convexity, and all hereditary properties of ordered graphs and images. A special case of our results implies, building on a recent result of Alon and the authors, that the distance of a given image or ordered graph from any hereditary property can be estimated (with good probability) up to a constant additive error, using a constant number of queries.

Subject Classification

ACM Subject Classification
  • Theory of computation → Streaming, sublinear and near linear time algorithms
Keywords
  • characterizations of testability
  • distance estimation
  • earthmover resilient
  • ordered structures
  • property testing

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Noga Alon and Omri Ben-Eliezer. Efficient removal lemmas for matrices. In Klaus Jansen, José D. P. Rolim, David Williamson, and Santosh Srinivas Vempala, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA, volume 81 of LIPIcs, pages 25:1-25:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. URL: http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.25.
  2. Noga Alon, Omri Ben-Eliezer, and Eldar Fischer. Testing hereditary properties of ordered graphs and matrices. In Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 848-858. IEEE Computer Society, 2017. URL: http://dx.doi.org/10.1109/FOCS.2017.83.
  3. Noga Alon, Eldar Fischer, and Ilan Newman. Efficient testing of bipartite graphs for forbidden induced subgraphs. SIAM J. Comput., 37:959-976, 2007. Google Scholar
  4. Noga Alon, Eldar Fischer, Ilan Newman, and Asaf Shapira. A combinatorial characterization of the testable graph properties: It’s all about regularity. SIAM J. Comput., 39(1):143-167, 2009. URL: http://dx.doi.org/10.1137/060667177.
  5. Noga Alon and Asaf Shapira. A characterization of the (natural) graph properties testable with one-sided error. SIAM J. Comput., 37(6):1703-1727, 2008. URL: http://dx.doi.org/10.1137/06064888X.
  6. Barry C. Arnold, N. Balakrishnan, and H. N. Nagaraja. A First Course in Order Statistics (Classics in Applied Mathematics). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008. Google Scholar
  7. Tim Austin and Terence Tao. Testability and repair of hereditary hypergraph properties. Random Struct. Algorithms, 36:373-463, 2010. Google Scholar
  8. Maria Axenovich and Ryan R. Martin. A version of Szemerédi’s regularity lemma for multicolored graphs and directed graphs that is suitable for induced graphs. arXiv, 1106:2871, 2011. Google Scholar
  9. Omri Ben-Eliezer, Simon Korman, and Daniel Reichman. Deleting and testing forbidden patterns in multi-dimensional arrays. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 9:1-9:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. URL: http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.9.
  10. Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. The power and limitations of uniform samples in testing properties of figures. In Akash Lal, S. Akshay, Saket Saurabh, and Sandeep Sen, editors, 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2016, December 13-15, 2016, Chennai, India, volume 65 of LIPIcs, pages 45:1-45:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. URL: http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.45.
  11. Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. Tolerant testers of image properties. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 90:1-90:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. URL: http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.90.
  12. Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. L_p-testing. In David B. Shmoys, editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 164-173. ACM, 2014. URL: http://dx.doi.org/10.1145/2591796.2591887.
  13. Eric Blais and Yuichi Yoshida. A characterization of constant-sample testable properties. arXiv, 1612:06016, 2016. Google Scholar
  14. Christian Borgs, Jennifer Chayes, László Lovász, Vera T. Sós, Balázs Szegedy, and Katalin Vesztergombi. Graph limits and parameter testing. In Proceedings of the Thirty-eighth Annual ACM Symposium on Theory of Computing, STOC '06, pages 261-270, New York, NY, USA, 2006. ACM. Google Scholar
  15. Clément L. Canonne, Elena Grigorescu, Siyao Guo, Akash Kumar, and Karl Wimmer. Testing k-Monotonicity. In 8th Innovations in Theoretical Computer Science Conference (ITCS 2017), volume 67 of Leibniz International Proceedings in Informatics (LIPIcs), pages 29:1-29:21, 2017. Google Scholar
  16. Xi Chen, Adam Freilich, Rocco A. Servedio, and Timothy Sun. Sample-based high-dimensional convexity testing. In Klaus Jansen, José D. P. Rolim, David Williamson, and Santosh Srinivas Vempala, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA, volume 81 of LIPIcs, pages 37:1-37:20. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. URL: http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.37.
  17. Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and Alex Samorodnitsky. Improved testing algorithms for monotonicity. In Dorit S. Hochbaum, Klaus Jansen, José D. P. Rolim, and Alistair Sinclair, editors, Randomization, Approximation, and Combinatorial Algorithms and Techniques, Third International Workshop on Randomization and Approximation Techniques in Computer Science, and Second International Workshop on Approximation Algorithms for Combinatorial Optimization Problems RANDOM-APPROX'99, Berkeley, CA, USA, August 8-11, 1999, Proceedings, volume 1671 of Lecture Notes in Computer Science, pages 97-108. Springer, 1999. URL: http://dx.doi.org/10.1007/978-3-540-48413-4_10.
  18. Funda Ergün, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld, and Mahesh Viswanathan. Spot-checkers. J. Comput. Syst. Sci., 60(3):717-751, 2000. URL: http://dx.doi.org/10.1006/jcss.1999.1692.
  19. Eldar Fischer. Testing graphs for colorability properties. Random Struct. Algorithms, 26(3):289-309, 2005. URL: http://dx.doi.org/10.1002/rsa.20037.
  20. Eldar Fischer and Lance Fortnow. Tolerant versus intolerant testing for boolean properties. Theory of Computing, 2(9):173-183, 2006. URL: http://dx.doi.org/10.4086/toc.2006.v002a009.
  21. Eldar Fischer and Ilan Newman. Testing of matrix-poset properties. Combinatorica, 27(3):293-327, 2007. URL: http://dx.doi.org/10.1007/s00493-007-2154-3.
  22. Eldar Fischer and Ilan Newman. Testing versus estimation of graph properties. SIAM J. Comput., 37(2):482-501, 2007. URL: http://dx.doi.org/10.1137/060652324.
  23. Eldar Fischer and Eyal Rozenberg. Lower bounds for testing forbidden induced substructures in bipartite-graph-like combinatorial objects. In Moses Charikar, Klaus Jansen, Omer Reingold, and José D. P. Rolim, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 10th International Workshop, APPROX 2007, and 11th International Workshop, RANDOM 2007, Princeton, NJ, USA, August 20-22, 2007, Proceedings, volume 4627 of Lecture Notes in Computer Science, pages 464-478. Springer, 2007. URL: http://dx.doi.org/10.1007/978-3-540-74208-1_34.
  24. Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to learning and approximation. J. ACM, 45(4):653-750, 1998. URL: http://dx.doi.org/10.1145/285055.285060.
  25. Oded Goldreich and Madhu Sudan. Locally testable codes and pcps of almost-linear length. J. ACM, 53(4):558-655, 2006. URL: http://dx.doi.org/10.1145/1162349.1162351.
  26. Oded Goldreich and Luca Trevisan. Three theorems regarding testing graph properties. Random Struct. Algorithms, 23(1):23-57, 2003. URL: http://dx.doi.org/10.1002/rsa.10078.
  27. Carlos Hoppen, Yoshiharu Kohayakawa, Richard Lang, Hanno Lefmann, and Henrique Stagni. Estimating parameters associated with monotone properties. In Klaus Jansen, Claire Mathieu, José D. P. Rolim, and Chris Umans, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2016, September 7-9, 2016, Paris, France, volume 60 of LIPIcs, pages 35:1-35:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. URL: http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.35.
  28. Carlos Hoppen, Yoshiharu Kohayakawa, Richard Lang, Hanno Lefmann, and Henrique Stagni. Estimating the distance to a hereditary graph property. Electronic Notes in Discrete Mathematics, 61:607-613, 2017. URL: http://dx.doi.org/10.1016/j.endm.2017.07.014.
  29. Felix Joos, Jaehoon Kim, Daniela Kühn, and Deryk Osthus. A characterization of testable hypergraph properties. In Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 859-867. IEEE Computer Society, 2017. URL: http://dx.doi.org/10.1109/FOCS.2017.84.
  30. László Lovász and Balázs Szegedy. Testing properties of graphs and functions. Israel Journal of Mathematics, 178:113-156, 2010. Google Scholar
  31. Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance approximation. J. Comput. Syst. Sci., 72(6):1012-1042, 2006. URL: http://dx.doi.org/10.1016/j.jcss.2006.03.002.
  32. Sofya Raskhodnikova. Approximate testing of visual properties. In Sanjeev Arora, Klaus Jansen, José D. P. Rolim, and Amit Sahai, editors, Approximation, Randomization, and Combinatorial Optimization: Algorithms and Techniques, 6th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2003 and 7th International Workshop on Randomization and Approximation Techniques in Computer Science, RANDOM 2003, Princeton, NJ, USA, August 24-26, 2003, Proceedings, volume 2764 of Lecture Notes in Computer Science, pages 370-381. Springer, 2003. URL: http://dx.doi.org/10.1007/978-3-540-45198-3_31.
  33. Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications to program testing. SIAM J. Comput., 25(2):252-271, 1996. URL: http://dx.doi.org/10.1137/S0097539793255151.
  34. Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision, 40(2):99-121, 2000. URL: http://dx.doi.org/10.1023/A:1026543900054.
  35. Endre Szemerédi. Regular partitions of graphs. In Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), volume 260 of Colloq. Internat. CNRS, pages 399-401. CNRS, Paris, 1978. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail