Consider a setting in which a prover wants to convince a verifier of the correctness of k NP statements. For example, the prover wants to convince the verifier that k given integers N_1,...,N_k are all RSA moduli (i.e., products of equal length primes). Clearly this problem can be solved by simply having the prover send the k NP witnesses, but this involves a lot of communication. Can interaction help? In particular, is it possible to construct interactive proofs for this task whose communication grows sub-linearly with k? Our main result is such an interactive proof for verifying the correctness of any k UP statements (i.e., NP statements that have a unique witness). The proof-system uses only a constant number of rounds and the communication complexity is k^delta * poly(m), where delta>0 is an arbitrarily small constant, m is the length of a single witness, and the poly term refers to a fixed polynomial that only depends on the language and not on delta. The (honest) prover strategy can be implemented in polynomial-time given access to the k (unique) witnesses. Our proof leverages "interactive witness verification" (IWV), a new type of proof-system that may be of independent interest. An IWV is a proof-system in which the verifier needs to verify the correctness of an NP statement using: (i) a sublinear number of queries to an alleged NP witness, and (ii) a short interaction with a powerful but untrusted prover. In contrast to the setting of PCPs and Interactive PCPs, here the verifier only has access to the raw NP witness, rather than some encoding thereof.
@InProceedings{reingold_et_al:LIPIcs.CCC.2018.22, author = {Reingold, Omer and Rothblum, Guy N. and Rothblum, Ron D.}, title = {{Efficient Batch Verification for UP}}, booktitle = {33rd Computational Complexity Conference (CCC 2018)}, pages = {22:1--22:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-069-9}, ISSN = {1868-8969}, year = {2018}, volume = {102}, editor = {Servedio, Rocco A.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2018.22}, URN = {urn:nbn:de:0030-drops-88681}, doi = {10.4230/LIPIcs.CCC.2018.22}, annote = {Keywords: Interactive Proof, Batch Verification, Unique Solution} }
Feedback for Dagstuhl Publishing