We prove new results on the polarizing random walk framework introduced in recent works of Chattopadhyay et al. [Chattopadhyay et al., 2019; Eshan Chattopadhyay et al., 2019] that exploit L₁ Fourier tail bounds for classes of Boolean functions to construct pseudorandom generators (PRGs). We show that given a bound on the k-th level of the Fourier spectrum, one can construct a PRG with a seed length whose quality scales with k. This interpolates previous works, which either require Fourier bounds on all levels [Chattopadhyay et al., 2019], or have polynomial dependence on the error parameter in the seed length [Eshan Chattopadhyay et al., 2019], and thus answers an open question in [Eshan Chattopadhyay et al., 2019]. As an example, we show that for polynomial error, Fourier bounds on the first O(log n) levels is sufficient to recover the seed length in [Chattopadhyay et al., 2019], which requires bounds on the entire tail. We obtain our results by an alternate analysis of fractional PRGs using Taylor’s theorem and bounding the degree-k Lagrange remainder term using multilinearity and random restrictions. Interestingly, our analysis relies only on the level-k unsigned Fourier sum, which is potentially a much smaller quantity than the L₁ notion in previous works. By generalizing a connection established in [Chattopadhyay et al., 2020], we give a new reduction from constructing PRGs to proving correlation bounds. Finally, using these improvements we show how to obtain a PRG for 𝔽₂ polynomials with seed length close to the state-of-the-art construction due to Viola [Emanuele Viola, 2009].
@InProceedings{chattopadhyay_et_al:LIPIcs.CCC.2021.10, author = {Chattopadhyay, Eshan and Gaitonde, Jason and Lee, Chin Ho and Lovett, Shachar and Shetty, Abhishek}, title = {{Fractional Pseudorandom Generators from Any Fourier Level}}, booktitle = {36th Computational Complexity Conference (CCC 2021)}, pages = {10:1--10:24}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-193-1}, ISSN = {1868-8969}, year = {2021}, volume = {200}, editor = {Kabanets, Valentine}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.10}, URN = {urn:nbn:de:0030-drops-142843}, doi = {10.4230/LIPIcs.CCC.2021.10}, annote = {Keywords: Derandomization, pseudorandomness, pseudorandom generators, Fourier analysis} }
Feedback for Dagstuhl Publishing