Starting with the two standard model of randomized communication complexity, we study the communication complexity of functions when the protocol has access to a defective source of randomness. Specifically, we consider both the public-randomness and private-randomness cases, while replacing the commonly postulated perfect randomness with distributions over 𝓁 bit strings that have min-entropy at least k ≤ 𝓁. We present general upper and lower bounds on the communication complexity in these cases, where the bounds are typically linear in 𝓁-k and also depend on the size of the fooling set for the function being computed and on its standard randomized complexity.
@InProceedings{ball_et_al:LIPIcs.CCC.2021.14, author = {Ball, Marshall and Goldreich, Oded and Malkin, Tal}, title = {{Communication Complexity with Defective Randomness}}, booktitle = {36th Computational Complexity Conference (CCC 2021)}, pages = {14:1--14:10}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-193-1}, ISSN = {1868-8969}, year = {2021}, volume = {200}, editor = {Kabanets, Valentine}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.14}, URN = {urn:nbn:de:0030-drops-142886}, doi = {10.4230/LIPIcs.CCC.2021.14}, annote = {Keywords: Randomized Communication Complexity, Randomness Extraction, Min-Entropy} }
Feedback for Dagstuhl Publishing