The minimum cut problem in an undirected and weighted graph G is to find the minimum total weight of a set of edges whose removal disconnects G. We completely characterize the quantum query and time complexity of the minimum cut problem in the adjacency matrix model. If G has n vertices and edge weights at least 1 and at most τ, we give a quantum algorithm to solve the minimum cut problem using Õ(n^{3/2}√{τ}) queries and time. Moreover, for every integer 1 ≤ τ ≤ n we give an example of a graph G with edge weights 1 and τ such that solving the minimum cut problem on G requires Ω(n^{3/2}√{τ}) queries to the adjacency matrix of G. These results contrast with the classical randomized case where Ω(n²) queries to the adjacency matrix are needed in the worst case even to decide if an unweighted graph is connected or not. In the adjacency array model, when G has m edges the classical randomized complexity of the minimum cut problem is ̃ Θ(m). We show that the quantum query and time complexity are Õ(√{mnτ}) and Õ(√{mnτ} + n^{3/2}), respectively, where again the edge weights are between 1 and τ. For dense graphs we give lower bounds on the quantum query complexity of Ω(n^{3/2}) for τ > 1 and Ω(τ n) for any 1 ≤ τ ≤ n. Our query algorithm uses a quantum algorithm for graph sparsification by Apers and de Wolf (FOCS 2020) and results on the structure of near-minimum cuts by Kawarabayashi and Thorup (STOC 2015) and Rubinstein, Schramm and Weinberg (ITCS 2018). Our time efficient implementation builds on Karger’s tree packing technique (STOC 1996).
@InProceedings{apers_et_al:LIPIcs.CCC.2021.28, author = {Apers, Simon and Lee, Troy}, title = {{Quantum Complexity of Minimum Cut}}, booktitle = {36th Computational Complexity Conference (CCC 2021)}, pages = {28:1--28:33}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-193-1}, ISSN = {1868-8969}, year = {2021}, volume = {200}, editor = {Kabanets, Valentine}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.28}, URN = {urn:nbn:de:0030-drops-143026}, doi = {10.4230/LIPIcs.CCC.2021.28}, annote = {Keywords: Quantum algorithms, quantum query complexity, minimum cut} }
Feedback for Dagstuhl Publishing