We study the following natural question on random sets of points in 𝔽₂^m: Given a random set of k points Z = {z₁, z₂, … , z_k} ⊆ 𝔽₂^m, what is the dimension of the space of degree at most r multilinear polynomials that vanish on all points in Z? We show that, for r ≤ γ m (where γ > 0 is a small, absolute constant) and k = (1-ε)⋅binom(m, ≤ r) for any constant ε > 0, the space of degree at most r multilinear polynomials vanishing on a random set Z = {z_1,…, z_k} has dimension exactly binom(m, ≤ r) - k with probability 1 - o(1). This bound shows that random sets have a much smaller space of degree at most r multilinear polynomials vanishing on them, compared to the worst-case bound (due to Wei (IEEE Trans. Inform. Theory, 1991)) of binom(m, ≤ r) - binom(log₂ k, ≤ r) ≫ binom(m, ≤ r) - k. Using this bound, we show that high-degree Reed-Muller codes (RM(m,d) with d > (1-γ) m) "achieve capacity" under the Binary Erasure Channel in the sense that, for any ε > 0, we can recover from (1-ε)⋅binom(m, ≤ m-d-1) random erasures with probability 1 - o(1). This also implies that RM(m,d) is also efficiently decodable from ≈ binom(m, ≤ m-(d/2)) random errors for the same range of parameters.
@InProceedings{bhandari_et_al:LIPIcs.CCC.2022.31, author = {Bhandari, Siddharth and Harsha, Prahladh and Saptharishi, Ramprasad and Srinivasan, Srikanth}, title = {{Vanishing Spaces of Random Sets and Applications to Reed-Muller Codes}}, booktitle = {37th Computational Complexity Conference (CCC 2022)}, pages = {31:1--31:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-241-9}, ISSN = {1868-8969}, year = {2022}, volume = {234}, editor = {Lovett, Shachar}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.31}, URN = {urn:nbn:de:0030-drops-165934}, doi = {10.4230/LIPIcs.CCC.2022.31}, annote = {Keywords: Reed-Muller codes, polynomials, weight-distribution, vanishing ideals, erasures, capacity} }
Feedback for Dagstuhl Publishing